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Chapter 1

Electric Charge

We are all familiar with the basic feature of matter called mass, which determines how strongly the gravitational
force pulls on an object. A second fundamental feature of all matter is electric charge. This course deals with
the effects of stationary and moving electric charges.

1.1 Introduction to Electric Charge

In this class, we deal with one thing and one thing only: the consequences of the existence of electric charge.
Electric charge is a fundamental property of everything in the universe. For almost all processes it is the most
important feature. Electric charge is like a label attached to everything in the universe. If you grind something
up and try to sort out the pieces of “charge” you won’t be able to do it, but all the pieces you make will have an
electric charge: either +, −, or 0.

Definition of Electric Charge: Electric Charge, Q or q, is a fundamental feature of
every object in the universe. Electric charge is like a label attached to everything in the
universe. It has no real definition, because to define something we must express it in
terms of other fundamental features. Electric charge just is, like mass just is. We will
define electric charge by the effects.

Unit of Electric Charge: The unit of electric charge is the Coulomb, C. Since electric
charge is a new fundamental idea, the Coulomb is a new fundamental unit and cannot
be expressed in terms of the units from mechanics: kg, m, s. It is the only new unit we
actually need for this class.

Electric charge could have behaved in any manner. It could have been an vector or a matrix. It might not
have had any mathematical representation at all. That it behaves as a simple number (a scalar) is going to make
the rest of the class a whole lot easier than it might have been.

Charge is Positive, Negative, or Zero: The electric charge of an object is either
positive, negative, or zero.

You probably have heard about electric charge since you were a kid, so this may seem like a trivial point to
make. However, electric charge could have been red and blue and added up to make a third kind of charge,
purple, rather than + and − which can add up to zero, so this is a real feature of the universe.

Electric Charge is Additive: If positive charge is mixed (somehow) with negative
charge, then charge cancels and you get a total charge that is the sum of the two
charges.

One Coulomb is an enormous amount of charge, and we will rarely work with charges that big, unless we’re
talking about lightning or computing the amount of charge that has the energy of a nuclear explosion when
confined to some volume. Normally we will work with very small fractions of a Coulomb and use the following
abbreviations:

9
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Symbols for Small Quantities of Charge: We often give you charges in milli-
Coulombs (mC = 1× 10−3C), micro-Coulombs (µC = 1× 10−6C), or nano-Coulombs
(nC = 1 × 10−9C).

Abbreviation Example Value
milli mC 1 × 10−3C
micro µC 1 × 10−6C
nano nC 1 × 10−9C
pico pC 1 × 10−12C

Usually, if you calculate a charge much larger than 1µC, you probably have done something wrong.

1.2 Conservation of Charge

Charge is the most important microscopic feature of any object. For the universe’s continued existence as
we know it, it is important that this feature is maintained. Fortunately, the total charge is conserved in ALL
microscopic and therefore in all macroscopic processes.

Law of Conservation of Charge: In all physical processes, the total charge before the
process,

∑

Qinitial, is equal to the total charge after the process,
∑

Qfinal.

∑

Qinitial =
∑

Qfinal

This law does not mean that the number of protons and electrons in the universe remains the same. Nuclear
processes change the number of protons, neutrons, and electrons. For example, your smoke detector turns a
neutron (charge 0) into an electron (charge -e), a proton (charge +e), and an antineutrino (charge 0). So the
number of charged particles changes but the total charge of the universe is the same, 0 = −e + e + 0 = 0.

In lab, and in your own personal experience, charge sometimes SEEMS to disappear. In these cases, it has
actually escaped into the atmosphere, the earth, or your body. We will call everywhere that charge escapes to
the environment.

Exchange of Charge with the Environment: If we are moving charge from place
to place or just letting a charged object sit around, some charge may be lost to the
environment.

Later on, we will be able to use a battery or a charged rod to draw charge out of the environment. When
analyzing a charge conservation process, missing charge or extra charge comes from the environment: the Earth,
water vapor in the air, etc.

Example 1.1 Adding Two Containers of Charge
Problem: Two containers with net charge are connected so that opening a valve will mix the charge. One
container has total charge Q1 = 7C and the other has total charge Q2 = −5C. No charge escapes to the
environment in the mixing process. What will the final charge of each container be once the valve is opened and
the charge mixes? Assume the containers are identical.

Solution

Since no charge is lost to the environment and charge is conserved,

∑

Qinitial = Q1 + Q2 = 7C − 5C = 2C =
∑

Qfinal

As the containers are symmetric, the charge is equally shared between the two containers.
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         Valve Closed          Valve Opened

7C -5C 1C 1C

1.3 Quantization of Charge

In this class, we will almost exclusively deal with non-atomic processes where a lot of charge is involved. That
charge comes in discrete pieces, usually electrons, but sometimes protons or ions. In this section, we work with
charge in its natural chunks.

1.3.1 Microscopic Origin of Charge

The everyday things around us are made up of atoms. Atoms are composed of a nucleus made up of a number
of protons and neutrons. Around the nucleus, a number of electrons orbit. If the number of electrons equals the
number of protons then the atom is electrically neutral, that is it has zero net charge. If the number of electrons
is different from the number of protons, the atom has a net charge and is called an ion.

Fundamental Unit or Quantum of Charge: Charge comes in discrete pieces that can
be expressed in terms of the fundamental unit of charge e = 1.602 × 10−19C.

The constants e, mp, and me have been measured to exceptional precision. For the most precise value of these
constants visit the National Institute of Standards or NIST at http://physics.nist.gov/PhysRefData/contents.html.

Charge of Elementary Particles: The proton has a charge +e = +1.602 × 10−19C,
the charge of an electron is −e = −1.602 × 10−19C, and the charge of the neutron is
0C.

Masses of Fundamental Particles: While we’re at it, the two fundamental charged
particles which make up most of the charged matter in the universe (with the uncharged
neutron) have fixed masses. The mass of the electron is me = 9.11× 10−31kg and the
mass of the proton is mp = 1.67 × 10−27kg. Therefore if I tell you something is an
electron, I don’t have to give you the mass.

The proton and electron make up the vast majority of the charged mass in the universe. The proton, neutron,
and electron make up the vast majority of normal mass in the universe. Note, most of the universe is dark energy
or dark matter that we have no clue about. Over the course of the 20th century a diverse array of other charged
particles were found. The electron has two cousins, the muon and the tau, that together are called leptons. Each
have charge −e. Each lepton has a neutrino that has charge zero. The proton and neutron are made up of
quarks that have charge ± 1

3 and ± 2
3 . The quarks in the proton and neutron are given the names up and down.

They have four siblings: charm, strange, top, and bottom. Quarks are an odd animal in that you cannot ever
find a quark on its own; they are always found in twos and threes such that the total charge of any free particle
composed of quarks is some integer multiple of e. The remaining particles are the particles that carry the forces:
the photon, the gluon, and the graviton. Each has zero charge. The particles that carry the so called weak force
have charges 0, and ±e. All the exotic particles are created only at high energy and are fairly short lived, so we
don’t have to worry about them when we analyze a toaster. For any material we will work with, the positive
charge comes from protons and the negative charge from electrons.
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1.3.2 Quantization of Change

Since all the charged particles in the universe have charges that are some integer multiple of e, the charge of
any object, even a macroscopic object with tons of atoms, is some integer multiple of e.

Law of Quantization of Charge: Charge comes in discrete chunks of size ±e (e =
1.6×10−19C). So a macroscopic bunch of charge Q can be divided into N magnitudes
of the fundamental charge:

Q = ±Ne.

where N is an integer.

It is possible to exchange ions that have excess positive charge—you do it in chemistry all of the time. In this
class we will move charge with wires and sparks and can assume that the net charge being moved is electrons,
and that the rest of the atomic components stay put. In all cases however, we will report the charge of an object
as the number of additional (excess) electrons it has over the number required to be electrically neutral or the
number fewer (deficient) electrons it has than is required for neutrality.

Excess and Deficient Electrons: Net Charge will be reported as an Excess Of or
Deficiency In Electrons

Example 1.2 Computing the Number of Elementary Charges in a Macroscopic Charge
Problem: In this class we routinely deal with 1µC charges. How many excess or deficient electrons make a
1.0µC charge?

Solution

If the charge Q is made up of an integer number of charged particles whose charge is ±e, then Q = ±Ne where
N is the number of electrons, Q is the total charge, and e = 1.602 × 10−19C.

N =

∣

∣

∣

∣

Q

e

∣

∣

∣

∣

=
1.0 × 10−6C

1.602 × 10−19C
= 6.212

The law of quantization of charge requires that N is an integer, but that only affects the 12th significant figure
in the number above. Electrons have a negative charge. An object is deficient in electrons if the object’s charge
is positive.

N = 6.2 × 1012 deficient electrons

1.3.3 Determining the Sign of a Charged Object

In lab, we work with many charged objects. How can the sign of the charge on the object be determined?
It is relatively easy to determine when something is charged because it then exerts a force on other objects.
Determining the sign of the charge is more difficult.

The Sign of the Electric Charge is Arbitrary: The universe does not have little +
and − signs stamped on everything, so the choice of whether the charge on the proton
is the positive charge or the charge on the electron is the positive charge was arbitrary.

Ben Franklin chose and most people feel his choice was bad. It would be far more convenient if the electron
had been assigned the positive charge. Since the choice was arbitrary, we need a reference with known charge to
determine the sign of the charge of an object.

Constructing a Positively Charged Reference Object: The clear plastic rod in lab
developed a positive charge when rubbed with felt. A glass rod rubbed with silk also
has a positive charge.

Constructing a Negative Reference Charged Object: A PVC rod rubbed with felt
becomes negatively charged. The golf tube rubbed with the oven bag has a negative
charge.
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1.4 Charge in a Macroscopic Object

1.4.1 The Structure of Matter

The number of protons in the nucleus almost completely determines the chemistry of the atom. Atoms with
the same number of protons are grouped within elements such as Carbon and Oxygen.

Definition of Element: An element, like Hydrogen or Helium, is all atoms with the
same number of protons in their nucleus.

The number of neutrons in the nucleus can vary somewhat from atom to atom for different atoms of the same
element. An atom with fixed number of protons and neutrons is called an nuclide. The collection of nuclides
belonging to the same element are the isotopes of the element. A nuclide is characterized by the atomic number
Z and the mass number, A. The mass number is the total number of protons and neutrons. For example, a
nuclide of carbon, one of the isotopes of carbon, with 6 protons (like all carbon atoms) and 7 neutrons would
have atomic number 6 and mass number 13 = 6+7. This nuclide is represented by the symbol 13

6 C. This nuclide
is called Carbon-13 as opposed to its more common relative with 6 neutrons, 12

6 C, Carbon-12.

Atomic Number: The atomic number, Z, of an atom is the number of protons in the
atom. Since atoms are neutral it is also the number of electrons. The atomic number
of Carbon is 6, so there are 6 protons and 6 electrons in an atom of carbon.

Mass Number: The mass number, A, is the total number of protons and neutrons in
an atom.

Any macroscopic object contains an enormous number of atoms; a number that is too large to conveniently
work with. Instead of working with the number of atoms, a arbitrary characteristic number of atoms in a
macroscopic object is defined, the mole.

Definition of Mole: A mole is a number of objects. One mole is defined as the number
of carbon atoms with mass number 12 (6 protons and 6 neutrons) required to make 12
grams of carbon.

Avogadro’s Number: The number of atoms (or anything) in one mole is called Avo-
gadro’s Number, NA, and equals

NA = 6.022 × 1023

The different isotopes of an element occur naturally with different abundances. For example, there is a lot
more Carbon-12 around than Carbon-13. The periodic table lists the average mass of one mole of an element.
This mass is given the name the atomic mass.

Atomic Mass: The atomic mass of an element is the mass of one mole of the element
in grams. So if a periodic table gives the mass of Helium as 4.0026 amu, then a mole
has a mass 4.0026g.

The periodic table reports the chemical symbol, the atomic number, Z, and the atomic mass as

Z

Symbol
Mass

⇒
6

C
12.01

where the periodic table entry for carbon is given as an example. If you have already sold back your chemistry
book, the web site www.webelements.com is an excellent source of chemical information.

Example 1.3 Computing the Number of Electrons in Aluminum
Problem: You are given 10kg of aluminum.

(a)How many electrons are in the aluminum?
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Select One of the Following:

(a) 5.8 × 1030electrons

(b) 2.9 × 1030electrons

(c) 2.9 × 1024electrons

(d-Answer) 2.9 × 1027electrons

(e) 5.8 × 1027electrons

(b)What is the total charge of the electrons?

Select One of the Following:

(a) −4.6 × 107C (b-Answer) −4.6 × 1010C (c) −9.2 × 109C (d) 4.6 × 1010C (e)
−4.6 × 1013C

Solution to Part(a)

(a) Compute Moles of Aluminum: The atomic mass of aluminum is 26.98154u where u is an atomic mass
unit. By the definition of atomic weight, one mole of aluminum has a mass of 26.98154g. Therefore, our block
of aluminum contains

N =
10kg

26.98154 g
mole

N = 370 moles of aluminum atoms,

where I have used 1000g = 1kg.
(b) Compute the Number of Atoms: The number of atoms of aluminum is the number of moles multiplied
by Avogadro’s number

N = (370 moles)

(

6.022 × 1023 atoms

mole

)

= 2.23 × 1026 atoms of Aluminum

(c) Compute the Number of Electrons: Aluminum is number 13 in the periodic table, and therefore has 13
electrons per atom. The total number of electrons in the block of aluminum is then

Ne = N · 13 = 2.9 × 1027electrons

Solution to Part(b)

The total charge of the electrons is

Q = −eNe = −(1.6 × 10−19C)(2.9 × 1027electrons)

Q = −4.6 × 1010C

From the above, a very very small percentage of the atomic charge is involved in even the largest macroscopic
charge.
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1.5 What is a Macroscopic Net Charge?

What is net charge? Charged particles are literally everywhere. If we take a rock, it contains on the order of
Avogadro’s number, NA, (NA = 6.022× 1023) of atoms, all of which have one or more protons and electrons. If
the protons and electrons in the rock could be separated, the protons or the electrons taken separately have an
enormous charge as demonstrated above.

Total Charge of Avogadro’s Number of Protons: A mole of protons has total charge

Q = NAe = (6.022 × 1023)(1.602 × 10−19C) ≈ 1 × 105C,

which is a VERY large net charge.

In this class, the net charges we will work with range up to a few micro Coulombs (µC), 1µC = 1 × 10−6C.
For this charge a very small fraction of the atoms in the charged objects have gained or lost an electron.

Fraction of Atoms Contributing to a Net Charge: The fraction of atoms out of
Avogadro’s number of atoms which must lose an electron to produce a charge of 1µC
is

1 × 10−6C

1 × 105C
= 1 × 10−11 fraction of atoms losing an electron.

This does not mean that only a few electrons are involved in a net static charge. The smallest(non-atomic)
charge we will deal with in class will be a few pico-Coulombs (pC), 1pC = 1×10−12C. Because the charge of an
electron or proton is so small, this 1pC = 1× 10−12C charge still involves the loss of a huge number of electrons.

Number of Elementary Particles in Minimum Macroscopic Charge: If we take
1pC = 1 × 10−12C as the smallest charge we can detect in this class, the smallest
number of lost electrons we can detect is

N =
1 × 10−12C

1.602 × 10−19C
≈ 107 deficient electrons,

which is still a lot of particles to move around.

So a macroscopic net charge results from a gain or loss of an electron by a very small fraction of the atoms
in a material, but still involves the gain or loss of a very large number of electrons.

1.6 Continuous Charge Distributions

A macroscopic charged object has a very large number of excess or deficient electrons. Therefore we can, to
a very good approximation, work with charge densities instead of individual charges.

1.6.1 What is a Charge Density?

The objects which actually have charge, protons and electrons, have a very small charge e = 1.6 × 10−19C.
Therefore any charge process which we can detect without very sensitive instruments involves a large number of
fundamental particles. In lab, we established a charge of −0.1µC by rubbing the golf tube. In the example above,
it was computed that 1µC required the removal of 6.25 × 1012 electrons. The electrons are added all over the
surface of the golf tube. The complete description of the electric properties of the golf tube involves giving the
location of each and every electron. It is inconvenient and usually impossible to keep track of this number of
objects. The number of objects is so large that we can, without introducing any significant error in calculations,
describe the charge of golf tube by how much total charge occupies some area of the tube, that is by its surface
charge density.

Three charge densities are important in describing extended charged objects, called charge distributions. We
will work first with uniform charge densities, which means the charge density is the same at all points on the
object. The three charge densities important in this class are: linear charge density, the charge per unit length
of an object which is a line or a curve; surface charge density, the charge per unit area of a charged surface; and
volume charge density, the charge per unit volume of charged volume.
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1.6.2 Geometry

To calculate the total charge of an object whose charge is well described by a uniform charge density, the
charge density is multiplied by the appropriate total length, area, or volume. This means we need to recall come
basic geometry.

Area of a Circle: The area of a circle with radius r is A = πr2.

Circumference of a Circle: The circumference, L, (the distance around the outside)
of a circle of radius r is L = 2πr.

Surface Area of a Cylinder (Excluding Ends): The surface area, S, of a cylinder
with radius, r, and length, L, is S = 2πrL, excluding the ends.

Volume of a Cylinder: The volume, V , of a cylinder with radius, r, and length, L, is
V = πr2L.

Surface Area of a Sphere: The surface area, S, of a sphere with radius, r, is S = 4πr2.

Volume of a Sphere: The volume, V , of a sphere with a radius, r, is V = 4
3πr3.

1.6.3 Computing Total Charge from a Density

Summary of Charge Densities: The table which follows summa-
rizes the calculation of the total charge from a uniform charge density.

Region Density Total Charge Pronunciation Units

Volume, V ρ Q = ρV ρ ≡ rho(row) C
m3

Area, A or S σ Q = σA = σS σ ≡ sigma C
m2

Length, L λ Q = λL λ ≡ lambda C
m

Example 1.4 Surface Charge Density of a Sphere
Problem: A spherical shell of charge has surface charge density σ = 4µC/m2 and radius r = 10cm. Compute
the total charge.

Select One of the Following:

(a) 5 × 10−4C (b) 5 × 10−6C
(c-Answer) 5 × 10−7C
(d) 5 × 10−10C
(e) −5 × 10−7C

Solution

By definition of surface area, the total charge of the shell is Q = σS where S is the surface area. For a sphere,
the surface area is S = 4πr2, so the total charge is

Q = 4πr2σ = 4π(0.1m)2(4 × 10−6 C

m2
)

Q = 5 × 10−7C
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Chapter 2

Electric Force I

Science is, at its core, a personal experience. It allows each person the power to find out what is true in the
universe. You most believe those parts of science that you have experienced, the things you have touched and the
things you have figured out for yourself. In this chapter, we examine features of electric force and charge which
we can understand without knowing how to calculate the force.

2.1 Basics of Electric Force

In lab, we found that the electric charge produces a force on charged and uncharged objects. In this section,
we examine what can be done with that observation alone.

2.1.1 Qualitative Exploration of Electric Force

I know I can charge something by rubbing it; when I rub a balloon through my hair, I hear tiny crackles like
lightning and then I can stick the balloon to a wall. Since gravity would normally tend to make the balloon fall
to the floor, there must be another force present between the charged balloon and the uncharged wall. The force
is the electric force. Balloons are somewhat a pain to work with, so I went to Wal-Mart and bought a golf club
sleeve (referred to here as a “golf tube”), and an oven roasting bag. The golf tube is some kind of soft black
plastic and the oven bag is a crinkly clear plastic. You will have met both in lab. If I rub the golf tube with the
oven bag, I transfer electrons from the oven bag to the golf tube leaving both with a net charge. The charge on
the golf tube is easy to detect since the golf tube will make your hair stand on end. It’s harder to find a convincing
way to show the bag is charged, especially when it is humid (where the charge quickly leaks away into the air),
but I know that the total amount of charge in the universe is constant, so if the golf tube is charged then the
oven bag must have the opposite charge.
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I can do a number of things with the golf tube:

• Attract small objects (grass seed, hair, etc.)

• Attract a Styrofoam ball on a string.

• Cause an aluminum can to roll.

• Use it to hold a golf club. (No, that’s silly).

At first I thought that electric force acted between two
charged objects, but all of these examples are of force be-
tween a charged object (the golf tube) and an uncharged
object (the other stuff). The reason for the attraction is that
grass seed, Styrofoam, etc. are full of positive and negative
charges that add up to zero charge (This means they have
the same amount of each sign of charge). The electric force
from the golf tube acts on all the charge in the uncharged
objects and causes the charges to separate slightly.

 Support

A Charged Rod Attracts an Uncharged Rod

 +

 +

 +

 +

 +

 +

 +

 +

Next, I wanted to systematically discover the basic princi-
ples of electrostatics. To make things as simple as possible,
I worked with two charged objects. When we understand
those, we can explain the behavior of the uncharged objects
by treating them as groups of equal amounts of + and −
charge. So I got a second golf tube, rubbed it and put it in
a hanger; then I rubbed the first tube. Instead of the first
tube attracting the second, the second tube was repelled. So
by personal observation: Like Charges Repel. Since the
only thing I had changed was that the second tube was now
charged, and I prepared the two charged rods in an identical
way, the repulsion must be a result of the fact that the two
tubes have the same charge.

 Support

 _  _  _  _  _  _
 _  _  _  _  _  _

 _

 _

 _
 _
 _
 _

 _

 _

 _
 _
 _
 _

Like Charged Rods Repel

The next step was to get some positive charge, which I (and
you) did by rubbing a clear plastic rod with felt. I then found
that the golf tube in the hanger was attracted to the charged
clear plastic rod, so the clear rod could not have the same
kind of charge as the golf tube. This in itself meant nothing
since we know that charged things attract uncharged things. I
and you prepared a second charged clear rod and that rod was
repelled by the first rod, so by personal observation: There
are At Least Two Kinds of Charge and Opposite Charges
Attract. This experiment has been done with many combi-
nations of materials and a charged object which repelled both
kinds of charge has never been found. Therefore, there are
only two kinds of charge.

 Support

 _  _  _  _  _  _
 _  _  _  _  _  _

Oppositely Charged Rods Attract

 +

 +

 +

 +

 +

 +

 +

 +

Through this experiment we have also observed another important feature of the electric force. Since the two
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rods had to be close together for anything to happen, we know The Electric Force Decreases with Increasing
Distance.

Conclusion from Experiments with Charged Rods

• There are at least two types of charges.

• Like charges repel each other.

• Opposite(Un-like) charges attract each other..

• The force between charges falls off with increasing distance.

2.1.2 Properties of the Electric Force

Every object with a non-zero electric charge exerts a force on every other object with a non-zero charge.
Therefore, the electron in your wristwatch feels an electric force from a proton in the star Betelgeuse. Properties
of the electric force of this proton, however, prevent you from hurtling off towards a distant star. The following
is a list of the important qualitative features of the electric force.

The Electric Force Weakens
with Distance: As we observed in
lab, the electric force between two
charged objects gets weaker as the
objects get farther apart.

 Falls off with Distance

QQ

QQ

Objects with the Same Sign
Charge Repel One Another: If
two objects have the same sign
charge, there will be a repulsive,
outward force between the objects. 

Likes Repel

 Q1

 Q2

F12

F21 F12= -

Oppositely Charged Objects At-
tract One Another: If one object
has a negative charge and another
object a positive charge, there will
be an attractive, inward force be-
tween the objects.

Opposites Attract

Q1

Q2

F12

F21 F12=-
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Electric Force Acts Along the
Line through the Centers of the
Charges: The direction of the
electric force will either be inward
or outward pointing along the line
that connects the two charges.

 Force Acts Along Center

Q1

Q2
F12

F21 F12= -

The Electric Force Adds Like a
Force: The electric force is just an-
other force. The electric force from
two objects can be added using
Newton’s Second Law, just like in
mechanics. The electric force can
be added to other types of forces
such as the gravitational force or a
frictional force. Adds Like Force Vector

Q1

Q2

Q0

F10

F20

F12

Newton’s Third Law Applies to
the Electric Force: The electric
force, ~FAB , an object A exerts on
an object B is equal and opposite
to the force, ~FBA, that object B
exerts on the object A. (~FAB =

−~FBA)

Newton’s Third Law

A

B

FBA

FAB

We will shorten the second and third points to Opposites Attract, Likes Repel and use it until you’re sick to
death of it. So back to the proton in Betelgeuse. The first property, that force falls off with distance, implies that
the electric force of a charged object will exert a very small force on a distant object. Betelgeuse is 600 light years
away, so the force from one proton is pretty small. Further, Betelgeuse, like everything else in the universe, is
nearly electrically neutral, so the force of the proton is cancelled by an equal and opposite force from an electron.

2.2 Effect of Electric Force on Materials

A conductor is a material through which net electric charge can travel distances larger than the size of an
atom. An insulator is a material through which charge cannot move. An insulator is also called a dielectric. If a
region of net charge is placed on a conductor, it will quickly spread to cover the entire surface. If a region of net
charge is placed on an insulator, the charge will remain where it was placed.

c© 2007 John and Gay Stewart, The University of Arkansas 20



2.2. EFFECT OF ELECTRIC FORCE ON MATERIALS CHAPTER 2. ELECTRIC FORCE I

Insulator Conductor

t = 0

t 8

t = 0

t 8

This is why it is so hard to use the golf tube, which is an insulator, to directly transfer charge to anything; but
it is easy to transfer charge using an electrophorus (Course Guide 3), since the plate is a conductor. Net charge
spreads over a conductor very quickly, so using the instruments of this class we will not be able to observe the
spreading process. Instead, we will always observe the conductor in its final state. Often an insulator is used to
cover the surface of a conductor, this is called insulation. In your house wiring, the insulation takes the form of
a plastic coating on the wires. In lab, a varnish will insulate the wires. Air is an insulator in most circumstances,
but will allow charge motion if a lot of electric force is applied. A spark is electric charge moving through the air.

2.2.1 Effect of Electric Force on Materials

With our general understanding of electric force, that it falls off with distance and opposites attract/likes
repel and our understanding of conductors and insulators, we can begin to understand how net charge behaves
in materials. At the atomic level, conductors and insulators are about the same—a bunch of atoms held together
in some manner. The atom is a collection of positively charged protons and electrically neutral neutrons with
negatively charged electrons orbiting the nucleus. The difference between conductors and insulators is the ability
of some of the electrons to move freely from atom to atom in a conductor. Electrons are not free to move in
an insulator, except interior to the atom. This means that electrons can move across a conductor in response to
electric force, but electrons in an insulator are stuck to their respective atoms.

Consider the behavior of a net charge placed on a conductor. Suppose a small patch of charge is sprayed on
the inside of a metal conducting bucket. Where will the net charge be a short time later?

t = 0 t > 0

Charge placed on inside of bucket Charge spread out on outside of a bucket

Since the charges forming the net charge are all of the same sign, the charges, in this case electrons, will repel
each other, pushing each other as far apart as they can get. In a very short time, the electrons spread out on the
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outside of the bucket as far apart as they can get. What would happen if the same experiment was done with
an insulator, spraying charge on the interior of a plastic bucket? The charges would stay where they were placed.
The behavior of the electrons on the conducting buckets leads to our first two principles of how electric charge
behaves in a material.

Net Charge Spreads out on the Outer Surface of Conductors: Because like charges
repel, charges try to get as far apart as possible, so charge spreads out on the outer
surface of a conductor.

2.2.2 Effect of Electric Force on a Charged Conductor

Consider the action of the electric force at a distance. If a negatively charged object (a golf tube) is brought
near a negatively charged conductor, the negatively charged tube will repel the negative charges on the conductor
and they will move away from the tube until the force exerted by the other negative charges on the conductor
balances the force exerted by the tube. Since the charges can’t escape the conductor, the force on the charges
is communicated to the conductor, and the negatively charged conductor feels a repulsive force, ~Ftc, from the
negatively charged golf tube. Likewise, the golf tube feels a repulsive force from the negatively charged conductor,
~Fct = −~Ftc, but the charges on it are stuck, so they don’t move around on the tube. The opposite happens if
the conductor is positively charged, as you can see from the following figure.

tube
Conductor

Q<0
Conductor

Q>0

tube

Ftc Ftc-Ftc-Ftc

Net Charge Moves In a Conductor in Response to an External Electric Force:
If a conductor is given a net charge and brought near another charged object, the net
charge on the conductor will move either farther away if it has the same sign as the
external charge (Likes Repel) or nearer if it has the opposite sign as the external charge.
The net charge will still be at the surface of the conductor. The net charge on an
insulator does not move through the insulator in response to an electric force.

2.2.3 Charge Sharing

Consider the two conductors with opposite charge shown in the figure below. The conductors are connected
by wire with a switch which is open and does not allow the charges to mix. Conductor 1 has a slight excess of
electrons. These excess electrons are spread over its surface to get as far apart as possible. Conductor 2 has
a slight deficit of electrons, and the atoms which are missing the electrons are near the surface. It is perfectly
acceptable to visualize conductor 2 with a mobile set of + charges.

Valve

Conductor 1 Conductor 2

-5C 2C
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What happens when the valve is opened allowing the charge to mix? Since positive charge attracts negative
charge, the positive and negative charge will get as close together as possible—excluding the charges that cannot
find mates.

∑

Qinitial = −5C + 2C = −3C =
∑

Qfinal

Therefore, once the valve is opened we will have the following

Conductor 1 Conductor 2

-1 1/2 C-1 1/2 C

If the objects are identical, we would have
Qfinal

2 = − 3
2C on each sphere. The other + and − charges were not

destroyed, but are paired up with a + charge very close to a − charge. In most processes, the total number of
electrons and protons remains the same. In ALL processes, the total charge is conserved.

Charge Sharing: If two conductors are placed in electrical contact, any net charge on
either conductor will spread out on both conductors. This will be called charge sharing.

2.2.4 Charge Separation on a Conductor

Now consider a neutral conductor in the presence of a charged object, a soda can for example. The electrons
in the conductor can still move, so the negatively charged electrons are pushed away from the negatively charged
tube, leaving a net positive charge behind. The total charge on the can is still zero. This process will be called
charge separation. A neutral soda can in the presence of a negatively charged golf tube is drawn below. The
charge on the can separates due to the external electric force of the golf tube. The electric force decreases with
increasing distance, so the force, ~Ftube,+, that the positive charges on the surface of the conductor experience

is stronger than the force, ~Ftube,−, that the negative charges feel, |~Ftube,+| > |~Ftube,−|. Therefore there is a net
attractive force between the tube and the neutral conductor, as drawn below.

Stronger force Weaker force

tube neutral can

What if we use a neutral conductor?

Ftube,+ Ftube,-

Fnet
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Charge Separation on a Conductor: If
a neutral conductor is brought near an ob-
ject with fixed charge, the mobile charge in
the conductor will move until the net elec-
tric force inside the conductor is zero. The
like charges move away from the charged
object and the opposite charges move to-
ward it. This process will be called charge

separation.

Conductor

 + 
 + 
 + 

 + 
 + 
 + 

2.2.5 Polarization of an Insulator

What if we use a neutral insulator? The charge cannot move large distances in an insulator, but the electrons
and protons are still affected by the electric force. Each atom is affected by the electric force, causing the electron
cloud to shift slightly leaving the center of like charge farther away and the center of unlike charge nearer the
external charge.

   no external electric

force, cloud symmetric

 external electric force, 

cloud slightly off center

rod

This causes a surface charge density in a neutral insulator when immersed in an external electric field. This effect
is called polarization.

Polarization of a Dielectric: If a dielectric
is brought into the field of a fixed charge,
atomic charge separates slightly producing a
surface charge density as drawn to the right.
Unlike charge separation in a conductor, no
charged particle has moved more than the
distance across one atom.

Dielectric + 

 + 

 + 

There is still an attractive force between a charged object and an uncharged insulator. The induced surface charge
density on the insulator is equal and opposite, but the electric force falls off with distance causing a net attractive
force as shown below.

tube
neutral 

plastic

bottle
Ftube,+ Ftube,-

Fnet
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2.2.6 A Charged Object Attracts an Uncharged Object

Since both neutral conductors and insulators are attracted by a charged object and every material is either a
conductor or an insulator, we can state:

A Charged Object Attracts an Uncharged Object: Because of the polarization of
insulators and charge separation on neutral conductors, a charged object attracts any
uncharged object.

The amount of surface charge produced by charge separation in a conductor is larger than the amount of surface
charge produced by polarization of an insulator (dielectric), so the force a charged object exerts on an uncharged
conductor is larger than the force it exerts on a similarly shaped insulator (dielectric).

Example 2.1 Picking Up Paper with a Balloon
Problem: After rubbing a balloon in your hair, you can use it to lift small pieces of paper off a table. Explain.

Solution

When I rub a balloon in my hair, charge is transferred to/from
the balloon from/to my hair and it acquires a net charge. The
net charge on the balloon causes the charges in the atoms of
the insulating paper pieces to polarize slightly leaving (as-
suming a negatively charged balloon) some excess negative
charge farther from the balloon and some excess positive
charge nearer to–as shown to the right. The electric force
falls off with distance so that the positive charges nearer the
balloon feel a larger attractive force than the repulsive force
felt by the negative charges on the paper farther from the
balloon, giving a net attractive force between the balloon and
the pieces of paper.

Balloon

Paper

2.2.7 Charging by Charge Separation

The same physics involved in charge separation can be used to produce conductors with equal and opposite
charges. Begin with two neutral conductors which are in electrical contact either connected by a wire or touching.
Bring a charged object near and there will be charge separation. If the connection is broken, objects of equal but
opposite charge are produced, by conservation of charge.
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cut wire

neutral

tube

2.3 Capacity and Grounding

2.3.1 General Discussion of Capacity

Last chapter and earlier in this chapter we
connected two identical conductors and ar-
gued that the charge on the conductors
would be shared equally between the con-
ductors. This is a general principle, that
if N identical conductors are arranged sym-
metrically with no external fixed charge any-
where near, the charge will share equally
among the N conductors. Now, consider
connecting two spheres of different sizes,
each with net charge Q.

Valve

Q Q

S
1 S

2

First consider the system before the valve is opened. Because S2 is larger than S1, the electrons carrying the
net charge of sphere S2 are farther apart than those in S1. Like charged objects push on one another (repel) and
that force decreases with distance. Therefore, since the charges on S1 are closer together than the charges on
S2, they feel a larger electric force pushing each other apart. That is, they feel a larger electric pressure. What
happens when we open the valve?

The charges in S1 and S2 both feel a force pushing each other apart and into the wire connecting the spheres,
but the charges in S1 feel a much greater force than the charges in S2. So some of those charges will be pushed
from S1 to S2 until this force equalizes, leaving Q1 < Q2. S2 holds more charge than S1 if they are connected
by a wire. We will call the amount of electric charge an object can hold its capacity and learn to compute it in a
few weeks.

Q1
Q2
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Approximate Capacity for Spherical Conductors: For spherical conductors S1 and
S2,

Q1

Q2
=

R1

R2

where R1 and R2 are the radii of S1 and S2 and Q1 and Q2 are their charges if connected
by a wire far from any fixed charge. Since this is physics, we will use this as a general
approximation for any object where we can’t actually compute the capacity.

2.3.2 Grounding

In most applications, a net static charge is a very undesirable thing. So we would like to have a way to remove
a net charge from a system. For an insulator, we’re out of luck. You just have to try different things (like washing
the system in water) to remove the charge. To remove charge from a conductor, we can use the fact that charge
is shared unevenly between conductors of different sizes. If a conductor is connected to a much larger conductor,
almost all of the net charge will move to the larger conductor. The largest conductor available is the earth, with
a radius of Rearth = 3, 963miles. If a conductor with a net charge is connected to the earth, the charge will be
shared in the ratio

Qconductor

Qearth
≈ Rconductor

Rearth
≈ 0 ⇒ Qconductor ≈ 0

so the earth absorbs most of the charge. In lab, we have been removing charge from electroscopes and electrophorii
by touching them. When we do this, our body becomes the large conductor, and we make the approximation

Rconductor

Rus
≈ 0.

The objects in lab involve relatively small amounts of charge. For larger charges or larger objects, it is best to
remove the charge by electrically connecting them to the earth. This is called grounding.

The earth is filled with water, if you dig a bit, but it is a rather poor conductor in general, so you have to
work to form a good ground. If a wire is touched to earth, the place where contact is made may be insulating
because it’s dry or a rock and a poor connection will be formed. To form a good connection, a long conductor is
used. In a house, an 8ft steel pole is driven into the earth.

Electrical Symbol for Ground: A ground
in an electrical circuit is represented using
the symbol to the right.

conductor

ground

Example 2.2 Grounding My Daughter
Problem: After playing on our trampoline, my younger daughter’s hair stands on end. When she touches the
metal frame there is a spark and her hair no longer stands up. Explain.

Solution
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(a) As she jumps on the trampoline, her feet rub the fabric of the
trampoline and charge (assumed to be negative for this discussion) is
transferred to her. The charge distributes on the surface of her body,
even to the surfaces of her hair. Since the strands of hair now have
like charge, they repel one another so her hair stands up.

SD

-

--

---
-

- -
-

-

- -- --

Earth

-- -

(b) When she touches the metal, the excess charge is transferred through the frame to Earth — the spark is the
visible evidence of this charge transfer. Since she is not charged, her hair returns to normal.

2.4 Shielding

2.4.1 Shielding Effect of a Conductor

When a charged object is brought near a conductor, the charge separates slightly
on the conductor. The amount of charge which separates is very small compared
to the amount of charge available.

conductor

The separated charge will not usually exceed a 1µC, whereas the available atomic charge is on the order of 1×105C.

Why doesn’t all the available atomic charge separate? Let’s build up the separated charge one electron at a time
and examine the force felt by the next electron to be added to the separated charge. The net force on the first
electron is the full electric force, ~FQ, of the external charge. The net force on the second electron which moves

to the surface is the sum of the external electric force ~FQ to the left AND the electric force ~Fe1
to the right from

the first electron separated AND a force, ~Fp1
, to the right from the positively charged region left behind by the

first electron. Therefore the force from the first charge added to the separated surface charge partially cancels the
external electric force. The total shielding force due the first electron is represented as ~Fs1 in the middle figure.
The size of ~Fs1 is greatly exaggerated. As more charge separates, the electrons (and protons) in the interior of
the conductor feel progressively less NET force, because the force from separated charges partially cancels the
externally applied force. The charge separation continues until the external force is completely cancelled by the
electric force, ~FsN , of the separated charge as shown in the third figure. The electrons in the interior of the
conductor then feel zero net electric force.
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Nth electron

e
N

e
1

Q

e
2

Q

e
1

Second electron

First electron feels

full electric force

Q

FQ FQ
Fs1 FQ

FsN

Net force on second 

electron reduced
Zero net force on Nth 

electron

First electron

The Inside of a Conductor is Shielded from the Electric Force: The mobile charge
inside a conductor feels no net electric force because the separated surface charge cancels
the external electric force. This effect is called shielding.

From this analysis, we can estimate that the amount of charge separated is not more than the external charge,
and probably much less.

Amount of Shielding Charge: Since the separated surface charge is closer to the
conductor than any external charge, it can be assumed that the amount of separated
charge is not greater than the external charge. If the external charge causing charge
separation is very near the conductor, the separated charge will be on the order of the
external charge.

This effect is very useful. It means the surface charge den-
sity on a conductor due to charge separation produces zero
electric force inside a conductor, thus shielding the interior
of the conductor from the electric force. Many instruments
and devices are adversely affected by electric forces, so this
shielding effect is very useful. Therefore, if we place a charge
inside a hollow space in a conductor, it will feel zero electric
force from the outside world.

q

conductor

cavity

No net force on q

Net Charge Placed Interior to a Hollow Conductor is Shielded from External
Electric Forces: If a fixed charge is placed inside a hollow space in a conductor, it will
feel zero net electric force from all charges exterior or on the surface of the conductor.

Example 2.3 Shielding of Electric Force by Bucket
Problem: Consider the situation to the right where a charged
pith ball is suspended from a string inside a conducting bucket.
A charged golf tube is brought near the conducting bucket.

(a)Draw the charge the golf tube causes to separate on
the conducting bucket.

(b)Describe the net force exerted on the pith ball. Tell
how your choice of force is consistent with Coulomb’s
Law which states that every charged object exerts a
force on every other charged object.

conducting
bucket

 + _ _
 _ _

tube

Solution to Part(a)
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Because charge can move in a conductor and like charges re-
pel/opposites attract, the electric force of the golf tube attracts
positive charge to it and repels negative charge from it to produce
the distribution of charge on the outside surface of the conductor
as drawn.

conducting
bucket

 + _ _
 _ _

tube

 +
 +
 +

 _

 _

 _

Separated
Charge

Solution to Part(b)

The pith ball feels zero total electric force. The pith ball still feels the electric force from the golf tube, but this
is cancelled by an equal and opposite electric force from the separated charge on the bucket.

2.5 Charging by Induction

2.5.1 Charging by Induction

In the discussion of charge sharing and grounding, there was no fixed charge near the system. That is, there
was no net charge that was trapped and could not either flow to another location on one of the conductors or
flow to the ground.

Fixed
Charge

No Ground

Fixed
Charge

System Grounded

Net Charge

In the picture at the left above, charge separates until the interior of the conductor feels zero net electric
force. The separated negative charge is held in place by the fixed charge. The separated positive charge is mostly
shielded from the force of the fixed charge and is not held in place. When a ground is connected, the positive
charge is free to escape to the ground and greatly increases its separation. Note: for you atomists, what happens
atomically is that negative electrons are drawn from the ground to neutralize the region of net positive charge. If
the ground is disconnected while the fixed charged object is still near, the conductor will have a net charge.

Definition of Charging by Induction: An object is said to be charged by induction if
a fixed charge is brought near a neutral conductor causing charge separation and the
conductor is then grounded, removing separated charge not held in place by the fixed
charge, thus leaving a net charge on the conductor.

In charging by induction, the charge that escapes to the ground is not pushed away by the fixed charge, it is
simply not held in place and so is free to move farther away by moving to the ground. This means the amount
of charge we produce on an object is approximately the amount of charge needed to shield the interior of the
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conductor from the electric force, so by our argument before, it should be of the same order of magnitude as the
fixed charge if it is close to the conductor.

The following example illustrates the escape of the untrapped charge a little more clearly. Remember there is
plenty of free atomic charge available at all points in a conductor, it is not just the small number of + and − we
draw on the figures that are in play.

 System Neutral

 Grounded

 System with Net Charge

2.6 Obtaining a Net Charge

Most people have experienced the effects of a net static electric charge including sparks, hair standing on end,
and static cling. What follows is a partial list of ways to produce a net static charge:

Charging by Friction: When two materials are rubbed against one another, there is
sometimes a charge transfer between the two materials. For example, you can charge a
balloon by rubbing it in your hair. My daughter is charged by jumping on a trampoline.
My car is charged when I drive it through dry air and I can charge my clothing by
rubbing it against the dryer walls.

Charging by Adhesion: Sometimes when two objects are stuck together, like two
pieces of tape or two sheets of foam insulation, pulling them apart will transfer charge
from one to the other.

Charging by Spraying Charge or Sparking: An object can be charged by spraying it
with charged particles. The earth is bombarded with charged cosmic rays. A pool can
be charged by a bolt of lightning. The screen of your TV is charged by the electrons
sprayed on it by the cathode ray tube.

Charging by Induction: A conductor can be charged by holding some of its charge in
place with another charged object and allowing the opposite charge to flow to ground.

Charging By Pumping Charge: The easiest and most common way to move charge is
to pump it between two conductors, or between the earth and one conductor. A battery
is a charge pump. We use the more exotic charging mechanisms in lab because it is
hard to develop a net charge whose force is observable using safe voltages.

Charging by Separation: A pair of objects can be given equal and opposite charges by
placing them in contact and causing their charge to spread by using a charged object,
and then separating the objects.
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2.7 Summary

2.7.1 Summary of the Basic Principles of Electrostatics

Before continuing let’s gather together the main principles used in analyzing the behavior of electrostatic
systems.

Charge is Conserved:

Charge Moves in a Conductor and does not Move in an Insulator:

Opposites Attract/Likes Repel:

Electric Force Decreases with Increasing Distance:

Charge is Shared Between Conductors in Electrical Contact:

Charge Separates on a Conductor in Response to an Electric Force:

An Insulator Polarizes in Response to an Electric Force:

Charge is Shared Unequally Among Conductors of Difference Sizes:

The Interior of a Conductor is Shielded from the Electric Force:

2.7.2 Placing the Charge You Want on a Conducting Sphere

The simplest illustration of some of these principles comes from playing with conducting marbles.
Sphere’s with Equal Charge: To produce a set of identical conducting spheres
all with equal charge, charge up a conducting sphere (a ball bearing or steel
marble for example) and call the charge on it Q. If you touch it with an
uncharged conducting sphere of the same size, the charges equalize between
the two spheres and afterward each sphere has a 1

2Q charge.

uncharged

Q

1
2

Q
1
2

Q

In the same way, if you want 1
3Q you can take three uncharged spheres and

put them in a triangle. So if you wanted charges 2q and 3q you could do the
following: 1. Charge up a single ball with a charged rod or by touching it to
the Van de Graaff generator. 2. Split that charge into two equal charges Q
by touching the charged ball with an uncharged ball. 3. Divide Q in half and
in thirds as in the previous examples, which gives you charges 1

2Q and 1
3Q.

Define q = 1
6Q and you have 1

2Q = 3q and 1
3Q = 2q.

unchargeduncharged

Q

1
3

Q

1
3

Q

1
3

Q
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The symmetry is crucial because in the three spheres placed in a line at the
right, to get as far apart as possible most of the charge will be on the two
outer spheres leaving less charge on the center sphere. We could conclude the
spheres on the ends have the same charge by symmetry.

 All Charge Same Due to Symmetry

Charges Unknown Because Not 
Completely Symmetric

1
3

Q

1
3

Q
1
3

Q

Q=? Q=? Q=?

We use the same size spheres because the charge is free to move in a conductor,
so there is no reason for the charge on two identical conducting spheres to be
different. If, however, we use two different size spheres, the charge will be
greater on the larger sphere.

Generally Larger Objects Hold More
Charge at the Same Energy

Q1
Q2

Q1 Q2<

Great! So what if I need +q and −q. Take two uncharged conducting spheres
and put them in contact near the charged golf tube.

 _

 _

 _

 _

 _

 _

 _

 _

 _

 _

 _

 _

 _
 _

 _

 _

 +

 +
 +
 +

Now move the spheres apart and the total charge of the two spheres must be
zero (since we didn’t touch the spheres with the golf tube, they still have the
same TOTAL charge they had at the beginning).  _

 _

 _

 _

 _

 _

 _

 _

 _

 _

 _

 _

Separate spheres in the presence of the charged
object.

+Q −Q

Example 2.4 Charging Marbles
Problem: You are given 3 identical uncharged conducting marbles and a negatively charged golf tube. You do
the following:

(i) Bring the golf tube near marble A and ground the marble. Remove the ground before removing the tube.
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(ii) Without loss of charge, bring marbles A and B into contact, then separate them.

(iii) Then without loss of charge, bring marble C into contact with marble B.

The final charges are, if marble A was given a charge +Q in step (i):

Select One of the Following:

(a) QA = QB = QC = Q/3 (b) QA = Q/4, QB = Q/2, QC = Q/4 (c) QA = Q, QB = Q/2,
QC = −Q/2 (d) QA = Q/4, QB = QC = Q/8 (e-Answer) QA = Q/2, QB = QC = Q/4

Solution

In step i, the marble is charged by induction to a charge of +Q. In step ii, the identical spheres are brought in
contact and they share charge equally, QA = QB = Q/2 In step iii, the two spheres share the charge equally
leaving QA = Q/2, QB = QC = Q/4, so the answer is (e).

c© 2007 John and Gay Stewart, The University of Arkansas 34



Chapter 3

Electrostatic Devices

At the end of Course Guide 2, we illustrated some of the basic features of the electric force and its action on
a conductor with some experiments with identical conducting spheres. Unfortunately, these will have to remain
thought experiments since the charge developed on the marble is too small to detect. In lab, we will construct
two classic electrostatic devices used by early experimenters to produce large net charges, the electrophorus, and
to detect small net charges, the leaf electroscope.

3.1 Electrophorus

We would like to build something which places a large net electric charge on a conductor, so that charge could
easily be transferred to whatever we want. We know that we can place a large net charge on an insulator. Using
the insulator we can charge a conductor by induction. We have reasoned that since the electric force decreases
with increasing distance, the amount of charge produced using charging by induction depends on how close the
fixed charge is to the conductor to be charged. It also seems reasonable that the total charge produced should
depend on the total area of the conductor brought near the insulator. Therefore, to produce a large net charge
using charging by induction we need to bring a large surface of a conductor very near a fixed charge. We can do
this by charging a flat insulating (plastic) plate and placing a flat piece of metal on it. The charge in the metal
separates. If the metal plate is grounded while sitting on the plastic, it will obtain a large net charge. This device
is called an electrophorus.

Metal

Plastic

 _  _  _  _  _  _  _

 _  _  _  _ _

 +  +  +  +  +

To build my own electrophorus, I used an acrylic
cutting board for the flat plastic plane and a pie pan.
In lab you used a piece of blue foam wallboard for the
plastic plane. I put an insulating handle on the metal,
a large plastic spice container, otherwise as soon as
I picked it up I would have grounded it. The way I
finally put it together is shown at the right. (Some
tape is slightly conducting, so if your electrophorus
does not work, try different tape or glue.)

super glue

large plastic spice

Aluminum Pie Pan

Upside down acrylic cutting board

container

found at summer sublet. (Also available
at Wal-mart)
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The electrophorus is charged by induction using our body as the ground. To charge the electrophorus, I rub the

cutting board with the oven bag. I put the pie pan on the charged plastic board and grounded it with my finger.
I felt a spark when I grounded it. I picked up the plate (by the handle) and tried to ground it again, and I felt a
spark. Here’s a picture of what happened:

___ _ _ _ ___ _ _ _

___ _ _ _ ___ _ _ _

Cutting board charged,

 +
 +  +  +  +

 +

_
__ _

_

Electrophorus placed on

 +
 +  +  +  +

 + Finger

Electrophorus grounded, negative

 +
 +  +

 +
 +  +

Electrophorus moved away.

electrophorus un-charged. cutting board, charge separates
on electrophorus, but electrophorus
still has zero TOTAL charge.

_

charge goes to ground, positive charge
held in place.

Since the metal plate is so close to the fixed charge on the insulator, it is a good approximation that the charge
density on the electrophorus is equal and opposite where the electrophorus makes contact with the insulating board.
The net charge produced on the electrophorus by charging by induction is then the charge density of the insulating
plate multiplied by the area of the electrophorus that makes contact with the plate. The sign of the charge of
the electrophorus is opposite that of the fixed charge on the insulator. You will understand this quantitatively in
Course Guide 9.

Example 3.1 Why Positive Charge on the Electrophorus?
Problem: In terms of basic electrostatic principles, why do you produce a positively charged electrophorus when
you touch the pie pan sitting on the negatively charged Styrofoam board. Draw a picture of the electrophorus
and board before and after you touch it.

Solution
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Since charge can move in a conductor and like charges at-
tract/opposites repel, when the pie pan is placed on the
charged board, opposite (+) charges move close to the board
and like charges (−) move farther away→ Charge Separation.
When the pie pan is touched, the positive charges are held
in place by the electric force of the cutting board, but the
negative charges are free to move. Since like charges repel,
the − charges will try to get as far apart as possible. Since
a human body is a larger conductor than the pie pan, the
charges can get farther apart by spreading out mostly over
the larger conductor, so − charges are transferred from the
pie pan to the person touching the pie pan leaving it positive.

___ _ _ _
 +

 +  +  +  +
 +

_
__ _ _

_

Neutral Electrophorus - Before Touched

___ _ _ _
 +

 +  +  +  +
 + Finger

Charged Electrophorus - After Touched

The behavior of the leaf electroscope charged with the electrophorus when a negatively charged golf tube is
brought near that you observed in lab indicates the electrophorus charges positive and the wallboard negative.

3.2 Leaf Electroscope

3.2.1 Building and Using a Leaf Electroscope

An electroscope is a device for detecting the presence of net charge. We will work with two electroscopes in
this class: the leaf electroscope and the pith ball electroscope.
A diagram of a leaf electroscope is shown to the right. The
aluminum foil is loosely hung on the loop of copper wire.
When you charge the electroscope by touching the bolt with
a charged conductor, the charge goes equally onto each of
the two aluminum foil strips and forces them apart (reason:
like charges repel). The jar keeps the leaves from blowing
around. The metal casing on the glass jar shields the foils
from external electric forces. The bolt conducts charge to
the foils. I cheated when I made mine because the physics
department had a few broken electroscopes, so I got the jar
and bolt for free.

Steel Bolt

Metal Covered Glass Jar

Loop of Copper Wire

Strips of Aluminum Foil

When I brought a charged object (shown as the electrophorus in the diagram) near the electroscope, I observed

the following:

 +
 +  +  +  +

 ++
+

++

+
+ +

+
+

+
+ +

+ +
+

+
+

+
+ +

+

__
_

_
_

+
+

Uncharged

Electrophorus near, Spark- Charge

 +
 +  +  +  +

 +
 +

 +  +  +
 +  + +

 +
 +

 +

 +
 +

 +
 + +

_

charge separates but
electroscope neutral

transferred
to electroscope
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Detecting Charge with a Leaf Electroscope: The leaf electroscope detects charge
in two ways. If a charged object is brought near the steel bolt, without transferring
charge, then the electric force causes charge to separate in the electroscope, causing
a deflection of the foils. The foils also deflect if a net charge is transferred to the
electroscope.

3.2.2 Demonstrating Charge Separation with a Leaf Electroscope

After I built the electroscope, I charged up a golf tube and observed the following:

 +  +
 +

 + + +
 +

 +

 _
 _  _

 _

 _
 _  _

 _

Charge separation happens when a charged object is brought near a conductor. Opposite charges are drawn
closer to the charged object and like charges move farther away. This can be observed visually using a leaf
electroscope. When a charged object, like the golf tube, is brought near the electroscope, but not so near that
charge transfers, the leaves of the electroscope deflect indicating a net charge on the leaves. However, when
the tube is removed the foils hang straight down indicating that no charge was transferred and the electroscope
remained neutral throughout the process. What happened? The negatively charged tube attracted positive charge
to the bolt of the electroscope, leaving a net negative charge behind in the leaves. This is charge separation. It
turns out that since the tube is an insulator, there is no charge transfer even when the tube touches since charge
cannot move through an insulator.
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3.2.3 Charging a Leaf Electroscope by Induction

To charge a leaf electroscope or any conductor by induction, bring a charged object near the electroscope; but
not so near that charge directly transfers. Ground the electroscope. While the external charged object is near,
remove the connection to the ground. Remove the external charged object and the electroscope will have a net
charge of opposite sign of the external charged object.

_ __
___

_

__

_

System Neutral Ground Remove Ground System Charged

_ _
___

_ _
___

_ _ _

_

Now, let’s return to the materials we worked with in lab and charge our leaf electroscope by induction. Charge
up a golf tube producing a negatively charged object and bring the golf tube near the bolt of the electroscope.
Charge separates in the electroscope and the leaves deflect. Touch the electroscope with your finger, thus
grounding the scope. You are a much larger conductor than the scope and are a good ground for it. Remove
your finger before the golf tube is removed and the electroscope will have a net positive charge.

+
+

++

_
_

_
_

Finger

+
+

++

Touch

the electroscope  negative charge escapes into

charge held in place
by tube

your body leaving net
positive charge in the electroscope.

The order you do things in charging by induction is very important; if we touch the electroscope after the
charged object is removed, the electroscope is grounded and has zero net charge.

+
+

++

+
+ +

+
+

+

Finger

+ +

+ +
+

+
+

Charged Electroscope Charge escapes into
body, electroscope
grounded

Example 3.2 Why Do Leaf Electroscope Leaves Un-Deflect?
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Problem: In , the instructor charged a leaf electroscope by induction using a negatively charged golf tube.
This gives the electroscope a net positive charge. A negatively charged golf tube was then brought close and the
behavior observed. Draw the charged electroscope with the golf tube near and far away (2 diagrams). Physically,
explain the behavior of the system in each drawing.

Solution

(a) Golf Tube Far Away: If the golf tube is far from the electroscope, the
repulsion between the like charges causes the positive charges to spread out over
the electroscope. The repulsive forces of the opposite charges on the leaves of
the electroscope cause the leave to deflect.

(b) Golf Tube Near: When the charged golf tube is brought near the charged
electroscope, the net positive charges are brought into the bolt, leaving the
leaves neutral, because opposite charges attract. The leaves are then uncharged
and do not deflect.

3.2.4 Demonstration of Capacity Using a Leaf Electroscope

I tried the following experiment with the leaf electroscope. I charged the electroscope, causing the leaves to
deflect, and then I took a spool of insulated wire which was not connected to anything and touched the bolt.
The leaves went mostly down. Even though it was connected to nothing, the spool of wire absorbed the charge
because it was a larger “box” than the electroscope. I, then, disconnected the wire and grounded the electroscope.
To see if the charge was really in the wire spool, I touched the electroscope with the end of the wire again. Sure
enough the leaves moved slightly apart. The charge was in the wire spool.
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Step I Step II

Step III Step IV

Charge a Leaf

Still Slightly

Touch it with a

After disconnecting

Reconnect
the wire

Electroscope is once

Electroscope

Charged

100ft spool of
insulated wire
not connected to
anything

the wire, ground
the electroscope

again charged, the
charge was in the wire.

3.2.5 Demonstrating Positive and Negative Charge with a Leaf Electroscope

We used the charged rods to show there are two different kinds of charge. We can use the leaf electroscope to
show that when the two different kinds of charge are mixed, they cancel. This strongly implies the two kinds of
charge may be thought of as + and − because they add like numbers. To demonstrate this, fill one electroscope
with + charge using the electrophorus and charge another electroscope negatively using charging by induction
and the electrophorus. The foils of both electroscopes will be deflected. Now connect the electroscopes with a
wire, the deflection of both scopes will decrease, with each electroscope sharing the sum of the electric charges.
If the charges were equal and opposite, we would end up with two uncharged electroscopes.
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+
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_

Switch
Positively

Negatively

If charges equal and

charged
electroscope

Charged
Electroscope

opposite they cancel

Example 3.3 Describing the Behavior of a Leaf Electroscope
Problem: I performed an experiment with two electroscopes connected by a wire. The results of the experiment
are shown in the sequence of figures below. The following sequence of actions are represented in the figures:

I Two neutral leaf electroscopes were connected by a conducting wire.

II A charged rod was brought near the bolt of one of the electroscopes, while still far from the other
electroscope. The leaves deflect as shown.

III The wire between the electroscopes is cut, without loss of charge.

IV The charged rod is removed.

V The wire is reconnected.

No charge was transferred from the charged rod to the electroscope at any time. No charge is lost to the
environment at any time. The wire allows the flow of charge but is sufficiently fine to contain none of the net
charge. The electroscope far from the golf tube is sufficiently distant not to feel a force from the golf tube.

(a)Draw the leaves on the electroscope in figure V.

(b)Draw the location of all net charge on all figures. There is no net charge in figure I.

(c)In general, in terms of general electrostatic principles, why do the leaves of a leaf electroscope deflect?
(No more than two sentences).

(d)What is the total charge of the two electroscopes in figure IV combined? (Positive, Negative, or
Zero).

(e)If the electroscopes in figure IV were close enough to interact, draw the direction of the force vector
on each electroscope exerts on the other electroscope to scale.
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I

 wire

 cut wire

 _

 _

 _
 _

 _

 wire
 _

 _

 _
 _

 _

 _

 rod

 II

 _

 rod

 III  IV

 reconnect wire

 V

Solution to Part (a)

Both electroscopes become neutral because the total charge of
the system is zero, by Conservation of Charge. So the leaves
hang straight down as drawn.  reconnect wire

 V

Solution to Part (b)

The charge is drawn in the figure below. The system of two electroscopes remains neutral so equal amounts
of opposite and negative charge is drawn. Opposites attract so the electroscope nearer the tube is positive.
No charge is in the leaves in figure III because they hang straight down. Charge spreads out throughout the
electroscope in figure IV.

c© 2007 John and Gay Stewart, The University of Arkansas 43



3.2. LEAF ELECTROSCOPE CHAPTER 3. ELECTROSTATIC DEVICES

I

 wire
 wire

 _

 _

 _
 _

 _

 _

 rod

 II

 _

 +

 + +

 +

 _  _

 _

 _

 cut wire
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 _
 rod

 III

 + +

 + +
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 _  _

 IV

 +

 +
 +

 +  _

 _ _

Solution to Part (c)

The leaves are filled with a net charge of the same sign. Like charges repel, causing the leaves to push apart.

Solution to Part (d)

Since no charge was transferred to the system and no charge was lost to the environment the total charge of the
two scopes must be zero by conservation of charge.

Solution to Part (e)

The electroscopes have opposite charges so they attract each other with equal and opposite forces.
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Chapter 4

Electric Force II

In the previous chapter, quite a bit of time was spent learning to reason about the effects of the electric force
and the behavior of charge in materials. Now its time to crunch the numbers.

4.1 The Strength of the Electric Force

The physical law giving the force exerted on one point charge by another point charge is called Coulomb’s

Law. So far we have worked with electric force only qualitatively, no numbers have been computed. All we need
to complete Coulomb’s Law is to know the magnitude of the electric force. The magnitude of the electric force

that an object with charge q1 exerts on an object with charge q2 is Fe =

∣

∣

∣

∣

kq1q2

d2

∣

∣

∣

∣

where d is the distance between

the centers of the two objects. (This is assuming the objects are small compared with the distance between them.
This is actually Coulomb’s Law for point particles! Later we will see how to use this law to calculate electric force
for things that cannot be assumed to be small.) With this addition, Coulomb’s Law can be stated completely:

Coulomb’s Law (Version 0): The force an object with charge q1 exerts on an object
with charge q2 has the following properties:

• If the charges have opposite signs the force is attractive.

• If the charges have the same sign the force is repulsive.

• The direction of the electric force is along the line shared by the centers of the
two charged objects.

• The magnitude of the electric force, Fe, is

Fe =

∣

∣

∣

∣

kq1q2

d2

∣

∣

∣

∣

where d is the distance between the centers of the two objects and k = 8.99×109 Nm2

C2 .

Example 4.1 Electric Force Exerted by Two Point Charges
Problem: Two +1C point charges are 1m apart. What is the magnitude of the force one exerts on the other?

Solution

The magnitude of the electric force is given by Coulomb’s law

|F | =
kq1q2

r2
=

(8.99 × 109 Nm2

C2 )(1C)(1C)

(1m)2
= 8.99 × 109N
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Example 4.2 Force Magnitude Only
Problem: Let object A have charge qA = 3µC = 3 × 10−6C
and object B have charge qB = 2µC. The locations of the charges
are as drawn. Compute the electric force that object A exerts on
object B. You may give the direction of the force in terms of the
line between the charges.

1cm

1cm 2cm

d

F

qA

qB

Solution

(a) Compute the Magnitude of Force: The direction of the electric force is outward along the line connecting

the charges (Likes Repel). The magnitude of the force is Fe =

∣

∣

∣

∣

kqAqB

d2

∣

∣

∣

∣

where d is the distance between the

charges. Using the Pythagorean theorem for the charges drawn, d2 = (2cm)2 + (1cm)2 = 5cm2 = 5 × 10−4m2,
so

Fe =

∣

∣

∣

∣

(8.99 × 109 Nm2

C2 )(3 × 10−6C)(−2 × 10−6C)

5 × 10−4m2

∣

∣

∣

∣

= 108N

= 100N with significant figures.

(b) Write the Force as a Vector: Force is a vector, therefore both a magnitude and a direction must be
reported.

~Fe = 100N directed outward along the line connecting A & B

The above is a perfectly valid expression of the force, but it would be more useful if we could write it as:

~Fe = (Fx, Fy, Fz) or

~Fe = Fxx̂ + Fy ŷ + Fz ẑ or

~Fe = Fxî + Fy ĵ + Fz k̂

I called the above form of Coulomb’s law “Version 0” because the vector form of the law which follows is the
formulation that I think of as Coulomb’s Law.

4.2 Review of Basic Vector Concepts

4.2.1 Vector Basics

A vector is a mathematical object with magnitude and direction. A vector is written with a small arrow
over the symbol. A vector is perfectly well specified by telling how long it is and in which direction it points.
For example, the vector ~A might be specified as ~A = 5yaks to the North. The vector ~A then has magnitude
| ~A| = A = 5yaks and direction to the North. Students like to write unusual vector expressions where a vector
equals a quantity that is not a vector. This is not allowed and will result in points being taken off on a test. The
following is a list of vector definitions which will be used extensively in this class.
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Writing a Vector in its Coordinate Form: A vector may be written by giving its length
along each of the axes of a coordinate system. Each of the following are equivalent.

~F = (Fx, Fy, Fz) = Fxx̂ + Fy ŷ + Fz ẑ = Fxî + Fy ĵ + Fz k̂

Definition of Coordinate Unit Vectors: î = x̂, ĵ = ŷ, and k̂ = ẑ are vectors with
length one that point along the coordinate axis. You can use either î, ĵ, k̂ or x̂, ŷ, ẑ,
but don’t mix them in the same problem.

Vector Addition: The sum of two vectors is found by adding their components

~FR = ~F1+~F2 = (F1x, F1y, F1z)+(F2x, F2y, F2z) = (F1x+F2x)̂i+(F1y+F2y)ĵ+(F1z+F2z)k̂

Multiplication of Vector by Number: A vector can be multiplied by a number, c, to
yield a vector c times longer but in the same direction. In coordinate form,

c ~F = (cFx, cFy, cFz)

Vectors are graphically represented as arrows and addition and subtraction of vectors can be done graphically.

Adding Vectors Graphically: Two vectors
~F1 and ~F2, for example two forces on charge
q, can be added graphically to form a resul-
tant or total vector ~FT = ~F1 + ~F2 by placing
the tail of the second vector on the point
of the first vector. The resultant vector is
drawn from the tail of the first vector to the
point of the second vector. The second vec-
tor is drawn as a dashed line.

F1

F2

FR

q

F2

Subtracting Vectors Graphically: Two
vectors, ~r1 and ~r2, may be subtracted graph-
ically, for example to form the displacement
~r12 = ~r2 −~r1. This is done by adding (−~r1)
and ~r2. The negative of a vector is the same
vector pointing in the opposite direction.

r1

r2

r12

−r1

4.2.2 Manipulating Vectors, Unit Vectors, and Magnitudes

A vector has magnitude and direction. The most important operation we will do with vectors is to take a
vector’s coordinate form and extract the magnitude and direction. The magnitude or length of a vector, ~A, is
written | ~A| or just A. The direction of a vector is represented by the unit vector Â. The extraction of both the
magnitude and the direction of a vector is shown below.

Definition of Vector Modulus: The modulus (magnitude) or length of a vector, ~v, is

v = |~v| =
√

v2
x + v2

y + v2
z .
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Definition of Unit Vector: A unit vector is a vector of length one. Given a vector ~r,
whose modulus is |~r|, the unit vector is

r̂ =
~r

|~r| =
rx

|~r| x̂ +
ry

|~r| ŷ +
rz

|~r| ẑ.

The unit vector is a vector of length 1 with the same direction as the vector.

Writing Vector as Magnitude and Unit Vector: A vector ~v can be written as its

magnitude |~v| = v =
√

v2
x + v2

y + v2
z multiplied by a unit vector, v̂ = ~v/|~v|, in its

direction,
~v = |~v|v̂.

4.2.3 Position and Displacement Vectors

The electric and magnetic force depend on the distance and direction from the point where the charge exists
to the point where the force is exerted, therefore the vector representing this directed distance is the one we
find ourselves computing most often. This vector is called the displacement vector and its length is the distance
between the two points.

Definition of Position Vector: A position vector points from the origin to a point. A
position vector for point A is written as ~rA. The coordinate form of a position vector
is just the coordinates of the point. For example, if the point C is at (0, 3m, 0) then
the coordinate form of the position vector ~rC = (0, 3m, 0).

Definition of Displacement Vector: A displacement vector points from one point to
another. A displacement vector from point A to point B is written as ~rAB . Note the
order of the subscripts. The displacement vector can be calculated by subtracting the
two position vectors: ~rAB = ~rB − ~rA.

Distance Between Two Points: The distance between two points given by position
vectors ~r1 = (x1, y1, z1), and ~r2 = (x2, y2, z2) is the magnitude of the displacement
vector ~r12 = ~r2 − ~r1, of the vector pointing from point 1 to point 2,

Distance = |~r12| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Example 4.3 Manipulating Displacement Vectors
Problem: Point 1 is at (1cm, 3cm, 5cm) and Point 2 is at (3cm, 3cm, 0).

(a)Compute ~r12.

(b)Compute |~r12|.
(c)Compute r̂12.

Solution to Part(a)

The displacement vector, ~r12, is a vector which points from point 1 to point 2,

~r12 = ~r2 − ~r1 = (3cm − 1cm, 3cm − 3cm, 0 − 5cm)

= (2cm)x̂ + 0ŷ − (5cm)ẑ

Solution to Part(b)

The modulus or length of a vector is by definition

|~r12| = r12 =
√

r2
12x + r2

12y + r2
12z

|~r12| =
√

(2cm)2 + 02 + (−5cm)2

r12 =
√

29cm
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Solution to Part(c)

The vector r̂12 is a unit vector (a vector of length one) in the direction of the vector ~r12. The unit vector is found
by dividing ~r12 by its length r12.

r̂12 =
~r12

r12
=

2√
29

x̂ − 5√
29

ẑ

A key step to visualizing and simplifying the calculation of the electric force of a system of point charges is
correctly drawing a diagram.

Use Opposites Attract/Likes Repel to Get Direction: Use opposites attract/like
repel and the fact that force acts along the line between the charges to get the direction
of forces correct. In the diagram below, q and q1 have the same sign so the force on
q points away from q1 (Likes Repel). q and q2 have different signs, so the force on q
points toward q2 (Opposites Attract).

 q1

 q2

F1q

q

F2q

FT

x

y

 q1  q2=

 q1  q, > 0

 q2 < 0

Use reasoning to get approximate relative magnitudes: If charges have sizes or
distances that are easily comparable use the fact that the magnitude of the Force
increases linearly with charge and decreases quadratically with distance. In the figure
above, |q1| = |q2| so the difference in magnitude is due to the difference in distances to
q. The electric force decays as 1/r2, so since the distance q1 to q is about twice q2 to

q, |~F2q| is four times |~F1q|.
Compute Total or Resultant Force: The total force on an object, also called the net
or resultant force, is found by adding all the forces applied to the object.

4.3 Coulomb’s Law

Now it’s time to let vectors work for us. All of Coulomb’s Law can be encoded into a single equation.

Coulomb’s Law (Vector Form): The electric force object A with charge qA exerts on
object B with charge qB is given by

~FAB =
kqAqB

r2
AB

r̂AB

where ~rAB is a vector which points from the location of object A to the location of

object B and k = 8.99 × 109 Nm2

C2 .
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To successfully use the vector form of Coulomb’s Law, we need to be able to manipulate the related quantities
~rAB , rAB , and r̂AB . I will restate their definitions for Coulomb’s law.

The Position Vector: The position vector, ~rA, for point A located at the coordinates
(Ax, Ay, Az) is a vector from the origin to the point A, ~rA = Axx̂ + Ay ŷ + Az ẑ.
The components of the position vector will be denoted by rAx = Ax, rAy = Ay, and
rAz = Az.

The Displacement Vector: The vector ~rAB points FROM point A TO point B and
has the length of the distance between the points. The displacement vector can be
computed as the difference of the position vectors

~rAB = ~rB − ~rA = (rBx − rAx, rBy − rAy, rBz − rAz).

Modulus of the Displacement Vector: The length of the vector ~rAB will be denoted
by rAB and is the distance from point A to point B. It can be computed in the same
way as the length of any vector

rAB = |~rAB | =
√

r2
ABx + r2

ABy + r2
ABz,

where the symbol |~V | represents the mathematical operation of taking the length of a
vector, called the vector modulus.

Unit Vector for the Displacement Vector: The vector r̂AB is a vector with length 1
(no units) pointing from point A to point B. It can be computed using

r̂AB =
~rAB

rAB
=

(

rABx

rAB
,
rABy

rAB
,
rABz

rAB

)

Let’s return to the calculation of the force charge A exerts on charge B and do it using vectors.

Example 4.4 Computing Electric Force Using Vectors
Problem: Let object A have charge qA = 3µC = 3 × 10−6C
and object B have charge qB = 2µC. The locations of the charges
are as drawn. Compute the force object A exerts on object B.

A

B
1cm

1cm 2cm

2cm

y

x

FAB

rAB

Solution

(a) Use Coulomb’s Law: The electric force object A with charge qA exerts on object B with charge qB is

~FAB =
kqAqB

r2
AB

r̂AB
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(b) Compute the Displacement Vector: The displacement vector points from the location of A to the location
of B,

~rAB = (2cm, 1cm, 0) = r̃B − r̃A.

which is consistent with the drawing since we have to move +2cm in the x direction and +1cm in the y direction
to move from A to B.
(c) Compute the Length of the Displacement Vector: The length of the displacement vector is by definition
of vector modulus

rAB = |~rAB | =
√

r2
ABx

+ r2
ABy

+ r2
ABz

=
√

(2cm)2 + (1cm)2 + 02 =
√

5cm.

This had better equal the distance between points calculated earlier.
(d) Compute the Unit Vector: The unit vector for the displacement vector is by definition

r̂AB =
~rAB

rAB

r̂AB =
~rAB

rAB
=

1√
5cm

(2cm, 1cm, 0)

= (
2√
5
,

1√
5
, 0)

The unit vector r̂AB should end up dimensionless, which it did. It also had better have length 1

|r̂AB | =
√

r̂2
ABx

+ r̂2
ABy

+ r̂2
ABz

=

√

(

2√
5

)2

+

(

1√
5

)2

+ 0

=

√

5

5
= 1

(e) Substitute into Coulomb’s Law: Substitute the vectors computed above into Coulomb’s Law and turn
the crank, being careful to convert cm properly, (

√
5cm)2 = 5cm2 = 5 × 10−4m2,

~FAB =
kqAqB

r2
AB

r̂AB .

~FAB =

(

(8.99 × 109 Nm2

C2 )(3 × 10−6C)(2 × 10−6C)

5 × 10−4m2

)(

2√
5
,

1√
5
, 0

)

~FAB = 100N

(

2√
5
,

1√
5
, 0

)

~FAB = (89N, 45N, 0)

The previous example placed one of the charges at the origin. The next example has both charges away from
the origin.

Example 4.5 Force on one point charge due to another
Problem: A point charge qB = 1.0µC at ~rB = (0.50cm, 1.45cm, 0) feels the electric force from a charge

qA = −1.0µC at ~rA = (1.4cm, 0.70cm, 0). Compute the force of qA on qB , ~FAB .

Solution
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x(cm)

y(cm)

1

10.5

0.5

1.5

1.5

rAB

rA

rB

qA

qB
FAB

Definitions

qB = 1.0µC ≡ Charge of qB

qA = −1.0µC ≡ Charge of qA

~rB = (0.50cm, 1.45cm, 0) ≡ Position of qB

~rA = (1.4cm, 0.70cm, 0) ≡ Position of qA

~rAB ≡ Vector from qA to qB

~FAB ≡ Force on qB due to qA

Strategy: Calculate the force between two point charges using Coulomb’s Law; this requires calculating the
position vector in both magnitude and direction.
(a) Draw a Good Diagram: The charges are placed at the given locations. Since unlike charges attract, the
force exert by qA on qB is attractive.
(b) Use Coulomb’s Law: The force on qB from qA is given by: ~FAB = kqA qB

r2
AB

r̂AB

(c) Use Definition of Displacement Vector: The displacement vector is a vector that points from the location
of charge A to the location of charge B.

~rAB = ~rB−~rA = (rBx−rAx, rBy−rAy, rBz−rAz) = (0.50cm−1.4cm, 1.45c−0.70cm, 0−0, ) = (−0.90cm, 0.75cm, 0)

= (−0.90cm, 0.75cm, 0)

(d) Use Definition of Vector Modulus: Calculate the length of the displacement vector,

rAB =
√

r2
ABx + r2

ABy + r2
ABz =

√

(−0.90cm)2 + (0.75cm)2 + (0)2 = 1.2cm

(e) Use Definition of Unit Vector:

r̂AB =
~rAB

rAB
=

(−0.90cm, 0.75cm, 0)

1.2cm
= (−0.75, 0.63, 0)

(f) Substitute into Coulomb’s Law:

~FAB =
kqAqB

r2
AB

r̂AB

=
(8.99 × 109 Nm2

C2 )(1.0 × 10−6C)(−1.0 × 10−6C)

(1.2 × 10−2m)2
· (−0.75, 0.63, 0)

~FAB = −62N · (−0.75, 0.63, 0) = (47N,−39N, 0)

(g) Check: Make sure the direction calculated matches the diagram.

4.3.1 Qualitative Features of Coulomb’s Law

We spent a lot of time in Course Guide 2 and Course Guide 3 developing a feeling for the electric force. It is
somewhat amazing that all the features we discovered are captured by ~F12 = (kq1q2/r2

12)r̂12. The next example
investigates how the qualitative features of the electric force are represented in Coulomb’s Law.
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Example 4.6 How Qualitative Features of the Electric Force are Represented in Coulomb’s
Law?
Problem: Coulomb’s Force Law relates the force object 1 exerts on object 2, to the charges of the objects and
the distance r12 between the objects:

~F12 =
kq1q2

r2
12

r̂12

where k is a constant and r̂12 is a unit vector in the direction of the vector ~r12 which points from the center of
object 1 to the center of object 2. This equation contains a lot of information. Let’s explore.

(a)Draw two objects with charge q1 and q2, the vector ~r12 and r̂12. r̂12 is a vector of length 1 (but no
dimensions) in the same direction as ~r12.

(b)What part of Coulomb’s Law represents the law“The magnitude of the electric force decreases with
the square of the distance between the charges?”

(c)What part of Coulomb’s Law represents the law,“The electric force between two objects is directly
proportional to the charge of either object”

(d)What part of Coulomb’s Law represents the law,“The electric force is directed along the line between
the charges”

(e)What part of Coulomb’s Law represents the law “Opposite charges attract, like charges repel”

Solution to Part (a)

The vector ~r12 points from the center of object 1 to the center
of object 2. The unit vector r̂12 is a vector of unit length, but
no dimensions, in the same direction. Since ~r12 is measured
in meters and r̂12 has no dimensions their lengths have no
relation in the diagram.

1 2

r12

r12

Solution to Part (b)

The distance dependence of the electric force is represented in Coulomb’s Force Law by the terms F ∝ 1
r2
12

where

the magnitude of the force decreases with increasing distance.

Solution to Part (c)

Since F12 ∝ q1q2, the electric force is proportional to the magnitude of either charge.

Solution to Part (d)

The unit vector r̂12 points along a line from q1 to q2. The direction of the force is either ±r̂12.

Solution to Part (e)

The force is repulsive if ~F12 points in the direction r̂12 and attractive if it points in the direction −r̂12. Both
k > 0 and r2

12 > 0, so the direction of the force is given by q1q2r̂12. If both charges have the same sign q1q2 > 0
and q1q2r̂12 points in the direction of r̂12 so the force is repulsive. If q1 and q2 have different signs q1q2 < 0, then
q1q2r̂12 points in the −r̂12 direction and the force is attractive.

People have a very had time accepting Newton’s Third Law; that for any pair of objects the force object 1
exerts on object 2 is equal and opposite to the force object 2 exerts on object 1. The next example explores
Newton’s Third Law and the electric force.

Example 4.7 Prove Newton’s Third Law for Electric Force
Problem: Consider two objects, 1 and 2, which have charges Q1 = Q and Q2 = 5Q where Q = +1µC. The
charges are at ~r1 = (0, 0, 0) and ~r2 = (10cm, 0, 0).
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(a)Compute ~F12 and ~F21.

(b)Show that Newton’s Third Law holds for any two objects with charges qA and qB , that is show
~FAB = −~FBA.

Solution to Part (a)

(a) Draw Diagram: By likes repel, the forces are as drawn.
By observation, ~r12 = (10cm, 0, 0) and ~r21 = (−10cm, 0, 0). By
definition, ~r12 points from Q1 to Q2.

Q 5Q

1 2

F12
F21

r12

r21

(b) Compute ~F12: Using Coulomb’s Force Law and r̂12 = x̂, r12 = 10cm,

~F12 =
kQ1Q2

r2
12

r̂12 =
kQ1Q2

r2
12

x̂

~F12 =
(9 × 109 Nm2

C2 )(1µC)(5µC)

(10cm)2
x̂ = 4.5 × 10−2N(x̂)

(c) Compute ~F21: Using Coulomb’s Law and r21 = 10cm and r̂21 = −x̂,

~F21 =
kQ2Q1

r2
21

r̂21 = −kQ1Q2

r2
21

x̂ = −4.5 × 10−2N(x̂)

~F21 = −~F12

Solution to Part (b)

Let ~rAB be the vector from the object with charge qA to the object with qB . The vector from B to A is then
~rBA = −~rAB . The distance from A to B equals the distance from B to A, so |~r| = ~rBA = ~rAB . The unit vectors
are related by

r̂AB =
~rAB

|~rAB | =
−~rBA

|~rAB | = −r̂BA.

So substituting into Coulomb’s Force Law,

~FAB =
kqAqb

r2
AB

r̂AB =
kqBqA

r2
BA

(

− r̂BA

)

= −~FBA.
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Chapter 5

Electric Field

We directly compute the electric force for only a few point charges. We will find it much more powerful in
most cases to compute the electric field.

5.1 Definition of Electric Field

For the rest of the class, we will be primarily interested in charge
and field. Forces will be of secondary importance, something that
it is easy to calculate after the real work is done. The first field we
encounter is the electric field. Consider the following situation: a
set of point charges, qi, are scattered all over the place at points
~ri. as shown to the right. We are then asked to compute the
electric force on a charge qA placed at point P . Using the vector
form of Coulomb’s Law, we find the net force on qA is

~FA =
5

∑

i=1

kqAqi

r2
iP

r̂iP

Now, if we were asked to compute the force on a different charge
placed at point P, qB , we would compute

~FB =
5

∑

i=1

kqBqi

r2
iP

r̂iP .

P

 q1

 q2

 q3

 q4

 q5

If I gave you enough of these charges at point P, you would start computing

~FA = qA

( 5
∑

i=1

kqi

r2
iP

r̂iP

)

where you only have to compute the quantity inside the parentheses,

(

(
∑5

i=1
kqi

r2
iP

r̂ip)

)

, once for each point P .

Simply multiplying the charge of any object placed at the point P by this quantity gives the force that the object
WOULD feel if it was placed at the point. Let’s divide by qA and separate this thing out, giving it the symbol ~E,

~EP =
~FA

qA
=

5
∑

i=1

kqi

r2
iP

r̂iP .

Note, I wrote ~EP and not ~EA because ~E is a property of the charges qi and the point P. It has nothing to do
with the charge qA placed at point P. As my Texan father-in-law would say, ”Now we’re cooking with gas!”

Definition of Electric Field: The electric field ~E at a point ~r is defined as the electric
force ~F a charge q0 would experience if placed at ~r, divided by q0, ~E = ~F/q0.
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Electric field is force per unit charge:

Units of Electric Field: The electric field is measured in Newtons per Coulomb, N/C.

Sizes of Electric Fields: Air sparks at an electric field of 3 × 106 N
C . The golf tube

creates a field of 1 × 106 N
C at its surface, the pith ball creates a field of 1 × 103 N

C at

2cm. The earth’s electric field, which none of us ever notice, is 150N
C .

There are two main things to take away from this section. First, if you have calculated the field, all you have
to do to calculate the force on an object with charge q is multiple by the field.

Calculate the Electric Force from the Electric Field: By definition of electric field,
the electric force on an object with charge q placed at point P is the electric field, ~EP ,
at point P multiplied by the charge

~F = q ~EP

The second main point is that you can figure out the direction of the field, if you can figure out the direction
of the force a positive charge WOULD feel if placed in the field. This observation is extremely useful because you
should be quite good at using opposites attract/likes repel to figure out the direction of the electric force.

Direction of the Electric Field: The electric field at a point P points in the direction
of the electric force a positive point charge WOULD feel if placed at point P .

5.2 Coulomb’s Law for Electric Field

5.2.1 Coulomb’s Law for the Electric Field

The only thing for which we know how to calculate the electric force is a point charge. In , Coulomb’s law
gave the force an object with charge q1 exerts on an object with charge q2 as

~F12 =
kq1q2

r2
12

r̂12

Applying the definition of electric field, ~E12 =
~F12

q2
, we derive Coulomb’s law for the electric field.

Coulomb’s Law for the Electric Field: A point charge produces an electric field that
points radially outward from or inward to the charge. The electric field, ~E10, produced
by object 1 with charge q1 at point 0 is given by:

~E10 =
kq1

r2
10

r̂10,

where k = 8.99× 109Nm2/C2, and ~r10 is the vector which points from the location of
object 1 to the point 0 where the field is measured.

Example 5.1 Electric Field of a Point Charge
Problem: A point charge with magnitude q = 8nC is at point 1 at (1cm, −1cm, 1cm). Consider the electric
field at a point P (3cm, 0, 0).

(a)Write the displacement vector

(b)What is the length of the displacement vector?

(c)Write a unit vector in the direction of the displacement vector.

(d)Compute the electric field at point P .
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P

3cm

 y

 x

r1P

Definitions

~r1P ≡ Displacement Vector

Q = 8nC ≡ Electric Charge

~E1P ≡ Electric Field at Point P

Solution to Part (a)

The displacement vector is, by definition,

~r1P = ~rP − ~r1 = (3cm, 0, 0) − (1cm, −1cm, 1cm)

~r1P = (2cm, 1cm, −1cm)

Solution to Part (b)

The length of the displacement vector is, by the definition of vector modulus,

r1P =
√

(2cm)2 + (1cm)2 + (−1cm)2

r1P =
√

6cm

Solution to Part (c)

The unit vector for ~r1P is, by definition,

r̂1P =
~r1P

r1P
=

(2cm, 1cm, −1cm)√
6cm

r̂1P =

(

2√
6
,

1√
6
,
−1√

6

)

Solution to Part (d)

The electric field of a point charge is given by Coulomb’s Law,

~EP =
kQ

r2
1P

r̂1P

=
(8.99 × 109 Nm2

C2 )(8 × 10−9C)

(
√

6 × 10−2m)2

(

2√
6
,

1√
6
,
−1√

6

)

~EP = (1.2 × 105 N

C
)

(

2√
6
,

1√
6
,
−1√

6

)

–OR–

~EP =

(

9.8 × 104 N

C
, 4.9 × 104 N

C
, −4.9 × 104 N

C

)
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5.2.2 Fields of More than One Point Charge

Almost any charged object has more than one point charge. The total field at point P can be calculated if
the fields of the individual charges are known.

Law of Linear Superposition: The electric field at a point P is the vector sum of the
electric field, ~EiP , produced by each individual charge or charged object

~Etotal =
∑

i

~EiP .

Linear Superposition allows us to build more complicated fields by combining simpler fields. Coulomb’s law and
the law of linear superposition are really all we need to calculate any electric field since any charge distribution
can be subdivided into electrons and protons, which are for our purposes point charges. Their fields can be
calculated and added by linear superposition. The following example applies the Law of Linear Superposition to
point charges.

Example 5.2 Yet Another Point Charge Problem
Problem: A point charge with charge q1 = 3nC is at the location (2cm, 3cm, 0). A second point charge with
charge q2 = −2nC is at the location (−2cm, 1cm, 0). Calculate the field a point P at (1cm,−3cm, 0).

Solution

(a) Draw Diagram: Use Opposites Attract/ Likes repel to draw
the direction of the fields at point P .

 P

 q1

 q2

r1P
r2P

 E1P

 E2P

 EP

(b) Calculate Field of q1: First find the field due to q1. The displacement vector, modulus, and unit vectors
are

~r1P = ~rP − ~r1 = (1cm − 2cm)x̂ + (−3cm − 3cm)ŷ + 0 = −1cmx̂ + −6cmŷ

r1P =
√

(−1cm)2 + (−6cm)2 =
√

37cm

r̂1P =

( −1cm√
37cm

,
−6cm√
37cm

)

=

(

− 1√
37

,− 6√
37

)

So the field at P due to q1 is

~E1P =
kq1

r2
1P

r̂1P =
(8.99 × 109 Nm2

C2 )(3 × 10−9C)

(
√

37 × 10−2m)2

(

− 1√
37

,− 6√
37

)

= −1.20 × 103 N

C
x̂ − 7.19 × 103 N

C
ŷ
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(c) Calculate Field of q2: Now find the field due to q2. The displacement vector, modulus, and unit vectors
are

~r2P = ~rP − ~r2 = (1cm − (−2cm))x̂ + (−3cm − 1cm)ŷ + 0 = 3cmx̂ + −4cmŷ

r2P =
√

(3cm)2 + (−4cm)2 = 5cm

r̂2P =

(

3cm

5cm
,
−4cm

5cm

)

=

(

3

5
,−4

5

)

So the field at P due to q2 is

~E2P =
kq2

r2
2P

r̂2P =
(8.99 × 109 Nm2

C2 )(−2 × 10−9C)

(0.05m)2

(

3

5
,−4

5

)

= −4.32 × 103 N

C
x̂ + 5.76 × 103 N

C
ŷ

(d) Add Fields Using Linear Superposition: Now, by the principle of superposition of electric fields, we can
simply add them up.

~EP = ~E1P + ~E2P = (−1.20 × 103 N

C
x̂ − 7.19 × 103 N

C
ŷ) + (−4.32 × 103 N

C
x̂ + 5.76 × 103 N

C
ŷ)

~EP = −5.52 × 103 N

C
x̂ − 1.43 × 103 N

C
ŷ + 0

5.3 Arrow Diagrams

5.3.1 Representing Electric Fields: Arrow Diagrams

The electric field, and later the magnetic field, are the central objects of electricity and magnetism. We can
visualize these fields through two types of diagrams: the arrow or vector diagram described below and the field
map which will be covered in Course Guide 7. The simplest way to represent the shape of the field is to use the
arrow diagram. An arrow diagram is drawn as follows:

Draw a Fixed Grid: To represent the vector field, select a uniform set of points and
draw the field vector at each point with appropriate direction and length.

The First Vector Sets the Length: The first vector you draw sets the scale for all
the other vectors.

Reason Using Ratios: Don’t compute the actual length of the vectors unless you have
to. In the diagram in an example that follows, I used the fact that twice as far from
the charge the field is 4 times weaker.

The Field is at the Tail of the Arrow: The vector represents the force or field at its
tail, not its point.

Example 5.3 Arrow Diagram for Uniform Field
Problem: Represent a uniform, constant, electric field with direction ( 1√

2
, −1√

2
, 0) and magnitude 100N using

an arrow diagram.

Solution
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Select a set of points. I chose a rectangular array for this
problem. Draw the first vector, which will set the scale. Then
draw vectors at all of the other points (to scale). Uniform Electric Field

 E

Now let’s try the field of a point charge.

Example 5.4 Arrow Diagram for an Isolated Point Charge
Problem: Draw an arrow diagram for a positive point charge.

Solution

The field of a point charge is radial and decays with distance
as 1/r2. I drew dashed circles of radius d and 2d. I drew
vectors pointing outward on the inner circle of any length
I wanted as long as they are all of the same length. These
arrows represent the electric field around the inner circle. The
field vectors around the outer circle must be 1/4 the length
of those around the inner circle because they are twice as far
from Q.

+Q

5.3.2 Field and Force

An electric field exerts an electric force on every charged object in the field. The electric force at point P on
a charged particle A with charge qA is ~FA = qA

~E(~rP ) where ~rP is the location of point P. Note that the force
is in the same direction as the field if qA > 0 and the opposite direction if qA < 0. Using this expression, which
defines the electric field, we can draw some electric forces on our arrow diagrams.

Example 5.5 Force on a Particle in an Electric Field
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Problem: The electric field in the figure to the right is given by
~E(~r) = γrr̂ where γ > 0.

(a)Draw the arrow diagram for this field using the dots
in the figure to the right.

(b)Draw the force a −1µC charge would feel if it was
placed at point A, point B, or point C.

(c)Draw the acceleration −1µC would experience at
point A.

y

x

A

BC

Solution to Part (a)

The electric field points radially outward and increases in strength proportional to the distance. The point B is√
2 ≈ 1.5 (1.41) as far from the origin as point C, so | ~EB | =

√
2| ~EC |. Using this observation, draw field arrows

at each of the dots.

y

x

B

A

C

 E

 E

 E E

 E

 E

Fq
Fq

Fq

aq

Solution to Part (b)

Since q = −1µC < 0, the force vector is opposite the direction of the electric field. The force vectors must be
drawn with magnitude proportional to the field since we asked for the force on the same charge.

Solution to Part (c)

The acceleration ~aq is always in the same direction as the force, since ~F = m~a and m > 0.
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5.4 Electric Fields of Lines and Planes

Let’s return to our old friends from lab, the pith ball, the wallboard, and the golf tube. The pith ball is well
modelled as a point charge whose field has already been introduced. If the point where the electric field is to be
calculated is sufficiently close to the wallboard, then the wallboard may be modelled as an infinite plane of charge
with uniform surface charge density, σ.

Electric Field of an Infinite Plane of Charge: The electric field of an infinite plane
of charge which occupies the y − z plane and has uniform charge density σ is

~Ex<0 =
−σ

2ε0
x̂

~Ex>0 =
σ

2ε0
x̂

where ε0 = 8.85×10−12 C2

Nm2 . Notice, the field does not change with the distance from
the plane.

Permittivity of Free Space: The constant ε0 = 8.85 × 10−12 C2

Nm2 is called
the“permittivity of free space” and is one of the fundamental constants of the uni-
verse.

Relation of k and ε0: The constant k found in Coulomb’s Law is related to ε0 by

k =
1

4πε0

Example 5.6 Field of an Infinite Plane of Charge
Problem: Using an arrow diagram, draw the electric field of an infinite plane of charge parallel to the y-z plane
with uniform charge density σ > 0.

Solution

Draw the plane of charge and the x-axis. Choose a collection
of points. The electric field to the left of the plane is −( σ

2ε0
)x̂

and the electric field to the right of the plane is ( σ
2ε0

)x̂. So
the electric field has the same magnitude at every point and
always points outward. Draw the first vector to set the scale
and every other vector to that scale.

Electric Field of Infinite Plane

x

Example 5.7 Electric Field of an Infinite Plane
Problem: An infinite plane with uniform surface charge density σ = 0.03µC/m2 occupies the y − z plane.
Compute the electric field everywhere.

c© 2007 John and Gay Stewart, The University of Arkansas 62



5.4. ELECTRIC FIELDS OF LINES AND PLANES CHAPTER 5. ELECTRIC FIELD

Solution

The electric field of an infinite plane of charge is ~E = σ
2ǫ0

outward. Therefore, if the plane occupies the y−z plane
and the charge density is positive, then the electric field the +x side of the plane is in the positive x̂ direction
and the electric field on the −x side of the plane is in the −x̂ direction. The magnitude of the electric field is

E =
σ

2ǫ0
=

3 × 10−8 C
m2

2(8.85 × 10−12 C2

Nm2 )
= 1695

N

C

The electric field must be reported as a vector, so the electric field of the plane is

~E = 1695
N

C
x̂ x > 0

~E = −1695
N

C
x̂ x < 0

For the golf tube, we will use the approximation of an infinite straight line with uniform linear charge density
λ, when the field point is near the tube, away from the ends, but not inside the tube.

Electric Field of an Infinite Line of Charge: The electric field of an infinite straight
line of charge is

~E(~r) =
λ

2πε0r
r̂

where ~r points straight outward perpendicular to the line of charge.

Example 5.8 Field of Infinite Line Charge
Problem: Draw the electric field of an infinite line of positive charge along the z-axis using an arrow diagram

Solution

The electric field is cylindrically radial about the z-axis and
decreases as 1

r . So select a set of points at radius d and 2d
about the line of charge. The magnitude of the electric field
at d is twice the magnitude of the electric field at 2d. Draw
the first vector to set the scale, and all other vectors to scale.
The vector’s length includes its tip. The vector represents the
strength of the field at the base of the vector.

x

y

d 2d

Infinite Line of Charge Along z-axis

Example 5.9 Golf Tube Example
Problem: The figure below shows a golf tube modelled as an infinite line of charge with charge density
λ = −0.1µC

m = −1 × 10−7 C
m . Find ~Etube, P . Read the location of the charge and the field point from the

diagram.
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z

x

1cm

1cm

tube

P
 E

λ < 0

rtube, P

rtube, P

rtube, P

Solution

(a) Displacement Vector: The displacement vector can be read from the diagram. To move from the tube to
P , we move +2cm in the x direction and −5cm in the z direction. From tube to P,

~rtube,P = (2cm, 0, −5cm)

(b) Calculate the Length of the Displacement Vector:

rtube,P =
√

(2cm)2 + 02 + (−5cm)2 =
√

29cm

(c) Unit Vector:

r̂tube,P =
~rtube,P

rtube,P

=

(

2√
29

, 0,
−5√
29

)

(d) Solve for Electric Field:

~Etube,P =
λ

2πε0rtube,P
r̂tube,P =

−1 × 10−7 C
m

2π(8.85 × 10−12 C2

Nm2 )(
√

29 × 10−2m)

(

2√
29

, 0,
−5√
29

)

~Etube,P = −3.34 × 104 N

C

(

2√
29

, 0,
−5√
29

)

5.5 General Vector Fields

Why do we call the electric field a ”field”? The electric force ~FA only exists when the charge qA is present,
but the electric field is always there. The electric field ~E exists at all points in space, so we could draw a field
vector at each point. At this point my daughter who was typing this inserted a comment, not to be displayed,
“In the infinite cosmos. Dad, you really need to work on your wording. I’m not sure if this is what you meant.”
But it was what I meant, a charged object produces an electric field, eventually, at every point in the infinite
cosmos. Since the electric field exists everywhere, we can write the electric field as a function of the point in
space, ~E(~r). This function allows the computation of a value for the electric field vector at each point in space.
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By working with non-uniform charge distributions we will produce quite a variety of fields. In this section, we
work with ~E(~r) = ~E(x, y, z) as a general vector function to gain some experience with functions that return a
vector.

Example 5.10 Computing the Electric Field at a Point Given the General Field
Problem: The electric field in a region of space is given by

~E(~r) = x2(
N

Cm2 )x̂ + y2(
N

Cm2 )ẑ.

(a)Compute the electric field at the point ~r0 = (2m, 1m, 0)

(b)Compute the electric force a −10µC charge would feel at ~r0.

(c)Compute the strength of the electric field at ~r0.

Solution to Part(a)

Just substitute into the given function; x = 2m, y = 1m, and z = 0.

~E(~r0) = (2m)2(
N

Cm2 )x̂ + (1m)2(
N

Cm2 )ẑ

= 4(
N

C
)x̂ + 1

N

C
ẑ

Solution to Part(b)

By the definition of the electric field, the electric force is the field multiplied by the charge q,

~F0 = q ~E = (−10µC)(Ẽ(r̃0))

= (−10µC)(4
N

C
x̂ + 1

N

C
ẑ)

= −4 × 10−5Nx̂ − 1 × 10−5Nẑ

Notice that, because the charge is negative, the force is in the opposite direction as the field.

Solution to Part(c)

The strength of the electric field is the length or magnitude of the electric field vector,

| ~E| =
√

E2
x + E2

y + E2
z

| ~E(~r0)| =

√

(4
N

C
)2 + 02 + (1

N

C
)2 =

√
17

N

C
.

That’s a pretty small field.

There are three general “shapes” of the electric field that we will encounter over and over: the uniform field,
the radial field, and the cylindrically radial field. The simplest is the uniform field, which has the same magnitude
and direction at every point in space.

Definition Uniform Field: A uniform field is one that has the same value at all points
in space, so it can be written as ~E = (Cx, Cy, Cz), where the C’s are constant.

Example 5.11 Writing a Uniform Field
Problem: In a region of space, the electric field is uniform, points in the positive x direction and has strength
50N

C . Write the electric field as ~E(~r).
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Solution

Because the field is uniform, if we know the field at one point we know the field at all points. The electric field
is ~E(~r) = 50N

C x̂.

The electric field of a single point charge is a radial field, which means that at every point in space it is
directed either inward or outward along a ray connecting that point in space and the single point charge. The
direction of a radial field is given in terms of the unit vector r̂ which points outward from the origin at every point.

Definition Radial Field: A field that has the form ~E = f(r)r̂, where the vector
~r = (x, y, z) and f(r) is a function only of the distance from the origin is called a radial
field. The field points inward or outward along the radius of a sphere.

Example 5.12 Force Due to Radial Field
Problem: In a region of space, the electric field is radial with strength γ

√
r where γ = 1.0 × 102N/C

√
m.

Compute the force that the field exerts on an object with a charge qA = 5.0µC located at the point ~rA =
5.0cmŷ + 3.0cmẑ.

Solution

(a) Write the Electric Field: From the information given, we can write the electric field as

~E(~rA) = γ
√

rAr̂A,

where the r̂ directional dependence is deduced from the fact that the field is radial.
(b) Compute the Vectors: To compute the field we need the quantities r̂A and rA. By definition of vector
modulus,

rA = |~rA| =
√

02 + (5cm)2 + (3cm)2 =
√

34cm.

By definition of unit vector,

r̂A =
~rA

rA
=

(0, 5cm, 3cm)√
34cm

=

(

0,
5√
34

,
3√
34

)

(c) Compute the Electric Field: Substitute into the expression for the electric field.

~E(~rA) = γ
√

rAr̂A =

(

100
N

C
√

m

)(√√
34 × 10−2m

)(

0,
5√
34

,
3√
34

)

~E(~rA) =

(

24
N

C

)(

0,
5√
34

,
3√
34

)

(d) Compute the Electric Force: By definition of electric force, the force on charge qA due to the electric
field is

~FA = qA
~E(~rA) = (5 × 10−6C)

(

24
N

C

)(

0,
5√
34

,
3√
34

)

= (1.2 × 10−4N)

(

0,
5√
34

,
3√
34

)

We also encounter electric fields which point radially outward from the axis of a cylinder.

Definition Cylindrically Radial Field: A radial field points outward or inward in all
directions from a point in space. A cylindrically radial field points straight outward
or inward from a line. A cylindrically radial field will be written ~E(~r) = f(r)r̂ where
~r = (x, y, 0) if the field is cylindrically radial about the z-axis.
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5.6 Electric Field of Many Objects

The fields of individual charges and charged objects can be added to form complex fields. The law of linear
superposition states that all we have to do is compute the electric field at point P of every charge and charge
distribution and add. The law of linear superposition applies to all electric fields, not just the electric fields of point
charges. We can calculate the fields of fairly complicated systems of charge by superimposing simpler systems.
The examples which follow combine point charges, line charges, and plane charges. As we add new calculation
methods in the chapters to come, we will revisit the Law of Linear Superposition, to build continuously more
complicated electric fields.

Before we work a really nasty problem involving the field of charged trash that I got at Wal-Mart, we need
to understand a trick about writing the individual fields of the objects, the displacement vector. Many of you
have probably seen the electric field of a point charge as ~E = kq

r2 r̂ but when we wrote it, we wrote the much less
pleasant expression,

~E12 =
kq1

r2
12

r̂12.

They are equivalent, but the first expression assumes that the charge is at the origin and in the second expression
the charge could be anywhere. The vector ~r12 is the displacement of charge 2 from charge 1, the displacement
vector. We have to do the same trick for other standard fields. For the example below, we will need the field of
a golf tube through the point 1cmẑ. We gave the field of the golf tube as ~Etube = λ

2πǫ0r r̂. To solve the problem
(or the related homework problem) you will need to write

~Etube,P =
λ

2πǫ0rtube,P
r̂tube,P .

So let’s compute the electric field of this assemblage of junk.

Example 5.13 Many Different Fields
Problem: The x − y plane is occupied by a uniform sheet of charge with charge density σ = 1.6 × 10−7C/m2.
An infinite line of charge runs parallel to the y-axis through the point −5cmx̂ and has charge density λ =
0.5× 10−6C/m. A point charge with charge q = 10nC is placed at the point +5cmx̂. Consider the electric field
at a point P at +5cmẑ.

(a)Draw a good diagram including the direction of the electric field of the three objects at point P .

(b)Compute the electric field of the infinite plane of charge at point P .

(c)Compute the electric field of the infinite line of charge at point P .

(d)Compute the electric field of the point charge at point P .

(e)Compute the total electric field at point P .

x

z

 +  +  +  +  +

P

5cm-5cm

rpoint, P

rline, P

 Eline, P

 Epoint, P

 Eplane, P

λ > 0  q > 0

Definitions

~rline,P ≡ Displacement Vector from line to P

~rpoint,P ≡ Displacement Vector from point charge to P

~Eline,P ≡ Electric Field from Line Charge at P

~Epoint,P ≡ Electric Field of the Point Charge at point P

~Eplane,P ≡ Electric Field of the Plane of Charge at Point P

~EP ≡ Total Electric Field at P

σ = 1.6 × 10−7C/m2 ≡ Charge Density of Plane

λ = 0.5 × 10−6C/m ≡ Linear Charge Density of the Line Charge

q = 1 × 10−8C ≡ Charge of the Point Charge

Strategy: Compute the electric field of each charge at the point P , then add using linear superposition.
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Solution to Part (a)

Draw a Good Diagram: The electric field of the plane charge points straight upward in the +ẑ direction.
The electric field of the line charge is repulsive and the electric field of the point charge is repulsive. We cannot
determine the relative magnitudes of these fields without actually computing the field, so I do not draw an
approximation for the resultant on the diagram.

Solution to Part (b)

Compute the Electric Field of the Plane Charge: The electric field of an infinite plane of charge in the x−y
plane at a point above the plane is given by

~Eplane,P =
σ

2ε0
ẑ.

~Eplane,P =
(1.6 × 10−7C/m2)

2(8.85 × 10−12 C2

Nm2 )
ẑ = 9 × 103 N

C
ẑ

Solution to Part (c)

Compute the Electric Field from the Point Charge: The electric field of a point charge at point P is by
Coulomb’s Law,

~Epoint,P =
kq

r2
point,P

r̂point,P .

The displacement vector from the point charge to the point P is ~rpoint,P = (−5cm, 0, 5cm), by observation of

the diagram. The length of this vector is rpoint,P = |~rpoint,P | =
√

(−5cm)2 + 02 + (5cm)2 = 5
√

2cm. The unit
vector of ~rpoint,P is by definition

r̂point,P =
~rpoint,P

rpoint,P
=

(−5cm, 0, 5cm)

5
√

2cm
= (− 1√

2
, 0,

1√
2
).

Now, substitute into Coulomb’s Law:

~Epoint,P =
(8.99 × 109 Nm2

C2 )(1 × 10−8C)

(5
√

2cm)2
(− 1√

2
, 0,

1√
2
).

~Epoint,P = 1.8 × 104N

(

− 1√
2
, 0,

1√
2

)

~Epoint,P = (−1.3 × 104N, 0, 1.3 × 104N)

Solution to Part (d)

Compute the Electric Field of the Line Charge: The electric field of a line charge is given by

~Eline,P =
λ

2πε0rline,P
r̂line,P ,

where ~rline,P is the displacement vector from the line charge to the point P . By observation of our diagram,
~rpoint,P = (5cm, 0, 5cm). Using the results of the calculations of the previous step, this gives rline,P = 5

√
2cm

and r̂line,P = ( 1√
2
, 0, 1√

2
). Substituting in the formula for the electric field,

~Eline,P =
0.5 × 10−6C/m

2π(8.85 × 10−12 C2

Nm2 )(5
√

2cm)
(

1√
2
, 0,

1√
2
),

~Eline,P = (1.3 × 105 N

C
)

(

1√
2
, 0,

1√
2

)

~Eline,P = (8.99 × 104 N

C
, 0, 8.99 × 104 N

C
).
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Solution to Part (e)

Use Linear Superposition to Add the Fields: The total electric field at point P is the sum of the fields,

~EP = ~Epoint,P + ~Eline,P + ~Eplane,P .

~EP = (−1.3 × 104N, 0, 1.3 × 104N) + (8.99 × 104 N

C
, 0, 8.99 × 104 N

C
) + (0, 0, 9 × 103 N

C
)

~EP = (7.7 × 104 N

C
, 0, 11.2 × 104 N

C
)
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Chapter 6

Mechanics

6.1 Mechanics Problems Involving the Electric Force

This section reviews some basic features of mechanics and applies it to the electric force.

6.1.1 Review of Mechanics

We detect net static charge by the force exerted on charged and uncharged objects. A quick review of
mechanics may be appropriate at this point.

Newton’s Laws Apply to the Electric Force: Just like any other force, we can use
Newton’s three laws on the electric force.

Newton’s First Law: An object continues in its initial state of rest or uniform motion
unless it is acted on by an unbalanced or net force.

Deduction I from Newton’s First Law: If an object is at rest, the net force on the
object is zero.

Deduction II from Newton’s First Law: If an object is moving in a straight line with
a constant speed, the net force on the object is zero.

Deduction III from Newton’s First Law: If an object is turning or changing speed,
there is a net force on the object.

What is Net Force?: The net force is the vector sum of all the forces, ~Fi,

~Fnet =
∑

i

~Fi.

Newton’s Second Law: The acceleration, ~a, and net force, ~Fnet on an object are
related by

~Fnet =
∑

i

~Fi = m~a,

where m is the unchanging mass.

Newton’s Third Law: (Equal and Opposite Forces) If object X exerts a force ~F on

object Y, then object Y exerts a force −~F on object X.
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6.1.2 Mechanics of Systems Involving Tension Forces

Floating or Stationary Masses: If an object is said to be floating, it is assumed to be
stationary. If an object is stationary, the net force on the object is zero, by Newton’s
First Law. Therefore,

∑ ~Fi = 0. This can be used to solve for one of the forces in
terms of the others.

Normal Forces: If an object sits or moves on a surface, like a table top, the table
exerts a force on the object perpendicular to the surface. This is called a normal force.
The force is large enough to keep the object from accelerating through the surface.

Force of Tension: If an object is partially supported by a string, then the string exerts
a force on the object called the tension and denoted by the symbol ~T . The tension of
the string must be included in the force balance.

Example 6.1 Pith Ball Floating Due to Electric Force
Problem: A pith ball of mass 0.1g is constrained to stay in a vertical tube. When a charged golf tube is placed
at the bottom of the tube, the pith ball floats in the air. How much force does the golf tube exert on the pith
ball when it is floating and not moving?

Solution

Since the pith ball floats, it is not accelerating. This means that
the total force on the pith ball is zero. The forces acting on the
pith ball are: the force of gravity ~Fg and the electric force ~Fe.

Thus, by Newton’s First Law, ~Fe + ~Fg = 0.The force of gravity

is ~Fg = −mgẑ with ẑ pointing upward. Therefore, ~Fe = −~Fg =
mgẑ.

~Fe = (0.0001kg)(9.8
m

s2
) = 9.8 × 10−4N

tube

__
_

_
_

______

_

_ ______ _

___

__

_ _ _ _
_ _ ___

_
_ __

_

 z

Fg

Fe

6.2 Mechanics in an Electric Field

Once we have solved the general electrostatic problem for a system of charges, we can let charged objects
move in the field. A uniform electric field exerts a constant force on a charged object. The object experiences
a constant acceleration by Newton’s Second Law. The trajectory of the charge can be predicted using the same
kinematic equations you used for motion under the force of gravity.

Recognize Constant Acceleration: If we are given a uniform electric field, it means
that the electric field is constant at all points in space, which means the force from the
electric field is constant, and the acceleration is constant ~a = q ~E/m. This means the
formula for motion under constant acceleration (like moving in earth’s gravity) can be
applied.
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Velocity for Constant Acceleration: If we have a constant acceleration, ~a, then the
velocity is

~vt = ~v0 + ~at,

where ~vt is the velocity at time t and ~v0 is the velocity at time zero. For motion in one
dimension, along the y-axis for example, this can be simplified to

vt = v0 + ayt,

where vt is the velocity at time t in the ŷ direction and v0 is the velocity in the y
direction at t = 0. Be careful here, ay, vt and v0 are all “signed” numbers, not

magnitudes, positive if they are in the direction defined as positive in your coordinate
system, negative if they are in the opposite direction.

Position Equation for Constant Acceleration: The position after time t of a particle
moving with constant acceleration ay along the y-axis is

yt = y0 + v0t +
1

2
ayt2,

where yt is the position at time t, y0 is the position at time 0, and v0 is the velocity at
time 0. Again, ay and v0 are “signed” numbers, and so are yt and y0.

Time of Flight Equation for Constant Acceleration: The time, ∆t, to travel a
distance, d, if v0 = 0 is, solving the above equation,

∆t =

√

2d

|a| .

We can take an absolute value here, because if you start out with v0 = 0 then the
displacement and the acceleration will have the same sign. If they have the same sign,
then you can just divide the magnitudes, and remember, distance is the magnitude of
the displacement, as long as the direction did not change during the motion.

Example 6.2 Motion in a Straight Line
Problem: A charged pith ball is fired down the center of a charged golf tube. Through some method you
observe that while it is in the tube it moves in a straight line with constant speed. What can you tell about the
force on the pith ball? Justify your answer.

Solution

The net force must be zero, since neither the magnitude of the velocity nor the direction of the velocity is changing,
by Newton’s First Law.

Example 6.3 Bead Floating above a golf tube
Problem: A bead of charge 2µC and mass 1g floats 5cm above a charged golf tube that lies parallel to the
ground. Assume this is close enough to approximate the golf tube as an infinite line of charge, and to neglect the
Earth’s electric field. The bead feels the downward force of gravity.

(a)What is the electric force on the bead?

(b)What is the linear charge density, λ, of the golf tube?

(c)Was it reasonable to neglect the Earth’s field?
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Bead

End View of Tube

y

Fg

Fwire

λ

Definitions

~FE ≡ Electric Force

m = 1gm ≡ mass of charge

q = 2µC ≡ Charge of Floating Mass

λ ≡ Charge per unit length of line charge

~Fg ≡ Force of Gravity

d ≡ Equilibrium Height

Solution to Part (a)

Use Newton’s First Law to Balance Forces: Since the charge is motionless, by Newton’s First Law

~Fg + ~FE = 0.

The force of gravity is ~Fg = −mgŷ. Solving for the electric force gives

~FE = −~Fg = mgŷ = (1 × 10−3kg)(9.81
m

s2
) = 9.81 × 10−3Nŷ

Solution to Part (b)

(a) Electric Field of an Infinite Line of Charge: The electric field of the line charge is

~E =
λ

2πǫ0r
r̂

(b) Find the Charge Density: By definition of electric field, the electric force is ~FE = q ~E. Substitute the
formula for the field,

~FE = +mgŷ = q ~E =
qλ

2πǫ0d
ŷ

where d = 10cm. Solving for λ and cancelling the vectors gives,

λ =
2πdǫ0mg

q
.

Solve

λ =
2π(5 × 10−2m)(8.85 × 10−12 C2

Nm2 )(9.81 × 10−3N)

2 × 10−6C
= 1.36 × 10−8C/m.

Solution to Part (c)

| ~E| = |~FE/q|
Substitute the force we found,

| ~E| = |mg/q| =
9.81 × 10−3N

2 × 10−6C
= 4.9 × 103N/C
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which is an order of magnitude bigger than the Earth’s electric field of 150N/C.

Example 6.4 Compute the Time for an Electron to Accelerate in a Field
Problem: The ratio of the charge to the mass is important in finding the acceleration of a charged particle.

(a)Compute e/m for a proton.

(b)What is acceleration of a proton in a uniform electric field of ~E = 100N/Cx̂?

(c)Nonrelativistic mechanics can be used only if the speed of the proton is significantly less than the
speed of light c = 3 × 108 m

s . Compute the time it takes for a proton placed in this field to reach a
speed of 0.01c if it starts from rest.

(d)How does this compare to the time it would take for an electron to reach this speed in this field?

Strategy: Use equations of the mechanics of motion during constant acceleration.

Solution to (a)

The ratio of e over mp is
e

mp
=

1.6 × 10−19C

1.67 × 10−27kg
= 9.58 × 107 C

kg

where e is the charge of the proton and mp is its mass.

Solution to (b)

The acceleration of a proton by Newton’s Second Law is ~a = ~Fp/mp where ~Fp is the net force on the proton. If

the force is provided by an electric field ~E, then ~F = e ~E by definition of the electric field, therefore

~a =
e

mp

~E = 9.58 × 107 C

kg
(100

N

C
î) = 9.58 × 109 m

s2
î

Solution to (c)

Since the electric field is constant, and therefore the acceleration is constant we can use v = |~a|t if the proton
starts from rest, where v is the velocity at time t. The time, t0.01c to reach v = 0.01c is

t0.01c =
v

|~a| =
(0.01)(3 × 108 m

s )

9.58 × 109 m
s2

= 3.1 × 10−4s

Solution to (d)

An electron is far lighter than a proton, so from the equation in part (b), the acceleration would be far greater,
and therefore the time to reach 0.01c far less.
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Chapter 7

Electric Field Maps

For the rest of this class, the field map will be used as the primary representation of both electric and magnetic
fields. This chapter develops the skills needed to draw these very useful diagrams.

7.1 Gauss’ Law, Field Lines, and Field Maps

7.1.1 Introduction to Gauss’ Law

In Course Guide 5, we worked with Coulomb’s Law for the electric field, ~EP =
∑ kqi

r2
iP

r̂iP , which allows the

calculation of the electric field if we know the location of all the charge. Both charge and field are equally
important. Therefore, it should be possible to reformulate Coulomb’s Law to allow the computation of the charge
from the field. The reformulation is called Gauss’ Law. In this chapter, we first work with a version of Gauss’
Law with all the mathematics removed, applying it to a new representation of the electric field called a field map.
Typically, a physical law is not named after a mathematician for manipulating another physical law, but Gauss
was quite a mathematician.

Gauss’ Law (Version 0): The net number of electric field lines exiting any closed
surface is proportional to the charge enclosed in that surface.

Q ∝ lines.

Definition of Open and Closed Surfaces: A closed surface will, metaphorically, hold
water. An open surface will not. A filled balloon is a closed surface, but a popped
balloon is an open surface. A shoe box with the lid on is a closed surface. A shoe box
with the lid off is an open surface.

Definition of Field Line: A field line is a graphical object, a representation of the
electric field. IT IS NOT A REAL PHYSICAL THING. A field line is a line drawn such
that the electric field is tangent to the line (pointing in the direction of the line) at all
points along the line. Therefore, if you are given a field line you should be able to draw
the direction of the electric field vector at each point along the line.
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The diagram to the right shows the arrow diagram
of an electric field and a few field lines. Observe
carefully, the field line is drawn such that it is tan-
gent to the vectors at each point it passes through
and interpolates between the directions of adjacent
vectors when it passes between two vectors. Given
a field line or a collection of field lines (called a
field map with additional restrictions), I would ex-
pect you to be able to draw the electric field vectors
at a set of points. It is also fair game to ask you for
the direction of the force on a given charge and the
direction of the acceleration. In the example which
follows, the electric field vectors are subtracted from
the diagram, with a few of the missing field lines
added.

 Electric Field Line

 Electric Field Vector

Example 7.1 Drawing Field Vectors Given a Field Map
Problem: The diagram to the right shows the electric field lines for some
charge distribution.

(a)At three points on each line, draw the electric field vector.

(b)For three of the electric field vectors drawn, draw the direction
of the electric force on an electron. Draw the acceleration of an
electron at one of the electric force vectors.

Solution to Part(a)

The electric field vectors are at every point tangent (point in the same direction
as) the electric field lines. Some of the field vectors are drawn slightly off the
field lines so they can be seen.
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Solution to Part(b)

An electron has a negative charge. By definition of the electric
field, ~F = q ~E, the force on a negative charge points in the oppo-
site direction to the electric field. Since ~F = m~a and the mass
m > 0, the acceleration ~a points in the same direction as the
force.

F a
F

F

 E

 E

 E

Gauss’ Law states that the net number of field lines leaving a closed surface is proportional to the net charge
in the surface, but it looks like I can draw field lines anywhere. To draw a representation of the electric field to
which Gauss’ law can be applied an additional constraint on the drawing of field lines must be imposed.

Definition Electric Field Map: An electric field map is a representation of the electric
field using field lines, where

• The number of field lines leaving or entering any charged object is consistent with
Gauss’ Law.

• The distance between field lines is inversely proportional to the strength of the
electric field.

Electric fields occupy three dimensional space, but our field maps are two dimensional, which is hard enough
to draw. Therefore, we are projecting a three dimensional image onto a two dimensional drawing. We introduce
errors by doing this. Our field maps should correctly be thought of as extending uniformly into and out of the
paper. We ignore this approximation because the field maps we draw have the correct shape and all reasoning
proceeds correctly using the two dimensional image. When a field map of a point charge or spherical system is
presented, it is actually the field map of a cylindrical system extending infinitely into the page. If this is unclear,
ignore it, because everything will work out beautifully. (The upshot is, you cannot use field maps to determine the
exact ratio of point charge field strengths at different distances by measuring the separation of the lines, because
you drew 3 dimensions worth of lines in only 2 dimensions.)
The electric field map we have been working with is drawn for a region of space
containing no net charge. How do I know? Gauss’ Law states that the charge
enclosed in any closed surface is proportional to the electric field lines exiting
the surface. A closed surface (dashed line) in drawn on the figure to the right. I
count four field lines entering the surface and four field lines exiting the surface,
therefore zero net field lines exit the surface and by Gauss’ Law the net charge
enclosed is zero. Anywhere I draw a surface on the diagram to the right, I
will find zero net field lines exiting the surface, therefore there is no net charge
anywhere in the region of space where this field is drawn. Cool! We can do
physics just by counting lines.
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I hope as you considered moving the Gaussian surface around the field map,
you started to wonder what a field map containing net charge would look like.
Simple, to produce a closed surface with net lines entering or exiting the surface,
field lines must start or end within the surface. The surface to the right shows
net lines entering the surface. Gauss’ Law states that the net field lines EXITING
a surface is proportional to the net charge enclosed in the surface. If net lines
exit, the charge enclosed is positive; if net lines enter, then the charge enclosed
is negative. In the figure at the right, net field lines enter the surface (the lines
point inward), therefore the charge enclosed is negative. In this way, we can
use Gauss’ law to locate charge in a field map.

Lines Begin on Positive Charge and End on Negative Charge: Electric field lines
begin on positive charges and end on negative charges or infinity.

7.1.2 Reading Electric Field Maps

Field lines may not cross. The electric field points in the direction of the field line at each point on the field
line. Therefore, if two field lines were to cross, the electric field would point in two different directions at the point
they cross. This is NOT ALLOWED. The electric field has a unique direction at each point in space, therefore

Field Lines Do Not Cross: If two field lines cross, then the electric field would have
two different values at the same point in space. That can’t happen.

Field maps are drawn so that the distance between field lines is inversely proportional to the magnitude of the
electric field. This means that the relative magnitudes of the electric field at different places in space can be read
off the field map by comparing the separation of field lines. We can’t get the exact ratio, though, since we are
drawing 3 dimensions worth of lines in 2 dimensions.

Density of Field Lines is Proportional to Magnitude of the Electric Field: The
density of lines is proportional to the magnitude of the field.

Far from a Net Charge the Field is Radial: Far from a distribution of charge with
non-zero net charge, the electric field points radially outward just line the field of a
point charge.

Drawn below is the arrow diagram and field map for a positive point charge. Comparing the two diagrams, we can
see that the field lines point in the direction of the electric field. In the arrow diagram the strength of the electric
field, | ~E|, is represented by the length of the vector. In the field map the strength of the field is represented by the
separation of the lines, so in the field map we can tell that the field is stronger at point A than point B because
the lines are closer together. Notice, the field map does not produce the correct length for ~EA and ~EB . Since
the point A is one third the distance from the charge as point B, the field at B should be 1/9 the magnitude of
the field at A. The field line separation is only 3 times more at point B than at point A rather than the 9 times
we would expect. Note, this is exactly correct if the charge were an infinite line charge. This is because we have
flattened the three-dimensional field to two dimensions.
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Arrow Diagram Field Map

A

B

Q

Q

 EA

 EB

Example 7.2 Reading Field Map for Unequal Point Charges
Problem: Consider the electric field map
drawn to the right. The magnitude of the
total charge of the system is |Q|.

(a)What is the total charge (in-
cluding the sign) contained in
the dashed line C?

(b)How much charge is contained
inside the dashed line A?

(c)How much charge is contained
inside the dashed line B?

(d)Compare the size and direction
of the electric field at points D
and E.

A

B

C

 E
D

Solution to Part(a)

Far from a charge distribution, the field lines become radial (point straight outward), and behave as if coming
from a point charge with the total charge of the distribution. Since field lines enter C, it must contain a net
negative charge. We are given the magnitude of the total charge as |Q|, so the total charge must be −|Q|. Let
this be written as −Q.

Solution to Part(b)

Four field lines enter C and eight field lines enter the surface A. Since field lines enter the surface, the charge
enclosed in A is negative. The number of field lines entering or leaving a surface is proportional to the charge.
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Since twice as many lines enter A as enter C, the charge enclosed by A is twice the charge enclosed by C.
Therefore, the charge enclosed by surface A is −2Q.

Solution to Part(c)

Four field lines enter C and four field lines exit the surface B. Since field lines exit the surface, the charge enclosed
in B is positive. Since the same number of lines leave surface B as enter surface C, the charge enclosed by B is
negative the charge enclosed by C. Therefore, the charge enclosed by surface B is Q.

Solution to Part(d)

The electric field points in the direction of the field lines. For D the field lines point to the left, so the electric
field, ~ED, is directed to the left. For E the field lines point to the right, so the electric field, ~EE , points to the
right. Notice I had to interpolate between field lines to get the direction at these points. The magnitude of the
electric field at point D is larger than the magnitude of the electric field at point E because the field lines are
closer together at D, | ~ED| > | ~EE |.

7.2 Drawing Electric Field Maps

7.2.1 Finding the Near and Far Fields of a System of Charge

The field mapping algorithm presented in this section works by figuring out the shape of the field map very
near the charges and very far from the charges and matching the two shapes. Very far from a system with net
(non-zero) charge, all the charge appears to be at the same point, therefore the electric field is the electric field
of a point charge whose charge is equal to the total charge of the distribution. This electric field is radial. If the
total charge of the system is zero, this reasoning does not apply. Course Guide 8 covers systems with zero net
charge.

For a system of point charges, we can also figure out what the field looks like very close to a point charge.
Since E ∝ 1/r2 the magnitude of the electric field goes to infinity near a point charge (you may assume quantum
field theory cuts off the singularity close enough to the charge). Therefore, very close to a point charge the electric
field is radial, since the electric field of the charge you are near dominates the field of all the other charges. This
also means the electric field leaves a point charge symmetrically.

Field Lines Leave Charge Symmetrically: The lines leave a point charge symmetri-
cally.

Correct Incorrect

Everything is Radial Far From a Net Charge: At large distances from any non-zero
charge, the lines are equally spaced and radial just as they would be for a point charge
with Q = total charge of the system.

7.2.2 Drawing Electric Field Maps

The electric field map will be our primary way of representing the electric field, and later we will use the
magnetic field map to represent magnetic fields. We use it because it is simple to draw and it shows the shape
of the field everywhere. Use the following process to draw an electric field map.

Draw the Location and Strength of the Charges: Leaving plenty of room, draw
circles where the electric charges are located. Label each circle with the strength of the
charge.
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Select a Number of Lines Per Charge: The number of field lines entering or leaving
a charged object is proportional to the charge of the object. If we have point charges
q1 = 5µC, q2 = −10µC, I might randomly select four lines to represent q1, therefore
eight lines represent q2.

Draw Stubs of Field Lines: Draw little arrows on the charges for the number of lines
selected. Arrows should point out for positive charge and in for negative. Near a point
charge the field lines are radial, since E → ∞ as r → 0. This means that the field line
stubs should be evenly spaced around the charge.

Draw the Long Range Field: Far from a charge distribution, the electric field will
have a characteristic shape. For distributions with a non-zero net charge, the electric
field far from the charges will be that of a point charge with a charge equal to the total
charge of the distribution. If we continue with q1 and q2 above, far from the charge we
will see a radial field equal to that of a point charge with charge qt = q1 + q2 = −5µC.
Draw a dashed circle far from the charges, which is called the circle at infinity. Draw
the appropriate number of field lines leaving or entering this circle. For q1 and q2, if
four lines leave q1 = 5µC, then four other lines must enter the circle at infinity since
qt = −5µC.

Connect the Stubs Without Crossing the Field Lines: Field lines do not cross, since
the electric field has a single direction at every point in space. (As Egon said, ”Do not
cross the streams. . . It would be bad.”) To finish the map, simply connect the field lines
on the stubs and the field lines at infinity, without crossing the lines. A line may not
begin and end with stubs pointing in different directions.

Respect Symmetry: The symmetry of your field map is affected by the initial choice
of stub directions, your choices for the field at infinity, and how you connect the stubs.
The field you end up with should have the same symmetry as the charges you started
with.

Let’s apply this process to the drawing of the electric field of one and two point charges.

Example 7.3 Drawing the Electric Field Map of One Point Charge
Problem: Draw the electric field map of one point charge : +Q.

Solution

(a) Draw and clearly label location of all charge: Compute the total charge of each object. Draw each
object and label it with its total charge. In this case we have only one charge which we will label Q.
(b) Select a number of lines for a certain amount of charge: Select a number so that a minimum of 2 lines
(preferably at least 4) are associated with an object. Use this to associate a number of lines proportional to the
charge with each object. For this problem use Q = 8 lines.

(c) Draw Stubs in the Direction of the Field Lines: Draw stubs for the number
of field lines. Q = 8 field lines evenly spaced around the charge. The electric field is
the electric force divided by the charge. So if I put another +q near the +Q charge it
will be pushed outward. [Like charges repel] So for the +Q charge, the field lines point
away from the positive charge.  +Q

(d) Compute total charge of system and draw the field at ∞: Draw a circle at infinity. Compute the
number of lines for the total charge and draw stubs with direction arrows on the circle at infinity. For this case,
the total charge is Q so there are 8 stubs pointing outward.
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 +Q

(e) Connect the lines: Connect the lines coming off of the charge to the circle at infinity. Bend things smoothly
so that each positive line emerging from a positive stub ends on a negative stub or on a positive stub on the circle
at infinity. Do not cross the lines, remember that electric field lines do not cross because this would mean that
the electric field had two values at one point in space.

 +Q

(f) Shake it up: Either the drawing will look great or weird. If it looks great, you’re finished. Congratulations.
If it looks weird, you need to rotate the stubs you initially drew and redraw until it doesn’t look weird.

Example 7.4 Draw Electric Field of Two Positive Point Charges
Problem: Two charges +Q and +Q are located at x = ±1cm on the x-axis, draw the electric field.

Solution

Strategy: Use general method of drawing electric field maps.
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(a) Draw Charges and Field Stubs: Draw the locations of the charges and
label their strengths. Select a number of field lines per charge. I pick Q ∝ 8
field lines. Field lines exit a positive charge. Draw the field line stubs exiting
the charge.

 +Q  +Q

(b) Draw the field far from the charges: We have a total
charge of 2Q, so we need 16 field lines at ∞.

 Q  Q

(c) Connect the Lines: Connect the stubs on the charges to
the stubs at ∞ without crossing the field lines.

 Q  Q
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(d) Respect the Symmetry: The charges are the same, there-
fore the field lines come out from each charge in the same way.
The field stubs I chose did not create an appropriately symmetric
picture, so the stubs had to be rotated. After rotating the field
stubs, the correct figure is drawn to the right.

 +Q  +Q

7.3 Drawing Arbitrary Continuous Fields

Approximate Continuous Distribution with Point Charges: To draw the field of a
continuous object replace the object with a few point charges that have the same total
charge, then draw the field just as we have been drawing point charge fields.

Example 7.5 Field Map Two Half Spheres
Problem: Draw the electric field map of the two half circles with equal and opposite charges. Approximate each
line with three charges using 12 lines per half circle.

Solution

(a) Draw the system: The system of charge is drawn to the right.

 +

 +  +

 +

 _

 _  _

 _

(b) Approximate the Continuous Distribution with Point Charges: The
problem asks for three point charges and 12 total lines, so each charge has four
lines. Field lines leave positive charges and enter at negative charges.  +

 +  +

 +

 _

 _  _

 _
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(c) Connect Everything Up: I had to shorten some of my stubs to get this one to look right. Notice, since
the net charge is zero, no lines exit to infinity. This is a dipole system which will be covered in more detail next
chapter.

 +

 +  +

 +

 _

 _  _

 _

7.4 Combining Arrow Diagrams and Field Maps

As you have begun to work with more complicated field maps with more charges and more lines, you have
encountered points where you had to make a choice about which line went where. These are real physical choices
since different choices change the relative separation of lines on your field map and therefore the strength of
the field. The proper way to resolve this ambiguity is to combine the field map and the arrow diagram. Before
beginning the field map, chose a small number of points and draw the field vectors with approximately the correct
length. Use these vectors a guide when you have to make choices when connecting the field lines.

Reason About Field Strength: As we draw more complicated field maps, it becomes
more difficult to decide how to connect the field lines. This means we have to begin to
reason about where the field is strong and weak to get a good field map. The best way
to do this is to draw the field vectors at a few points.

Example 7.6 Draw Field of Single Half-Circle of Charge
Problem: Draw the electric field map of a half-circle of positive charge. Approximate the circle using three
point charges, with a total of twelve lines.

Solution

c© 2007 John and Gay Stewart, The University of Arkansas 85



7.4. COMBINING ARROW DIAGRAMS AND FIELD MAPS CHAPTER 7. ELECTRIC FIELD MAPS

(a) Approximate the Object by a Series of Point Charges:
Approximate the linear charge by three point charges, each with
four field lines. The total number of lines escaping to infinity is
3 × 4 = 12 lines. Draw the circle at infinity and 12 lines leaving.

 +

 +  +

 +

(b) Connect The Lines: Connect the lines without crossing.
Examine the field map and realize something’s wrong. We know
that inside the half circle, the field must be weaker because of
cancellation. If is were a full circle, the field would be zero. In the
field map we drew, the field lines are closer together, indicating
a stronger field. We must have made a mistake selecting what
stub went to which line at infinity. Unfortunately, as the systems
of charge become more complicated and have less symmetry, this
kind of reasoning about relative strengths becomes necessary.

 +

 +  +

 +

Wrong!

(c) Reason about the field strength: Consider the points A
and B on the figure to the right. The contribution of the middle
charge is the same at each point. For point A, the contribution
of the two outer charges exactly cancels, but for point B the two
outer charges have a positive contribution. Therefore, the electric
field is stronger at point B than at point A. Draw appropriate
field vectors

 +

 +  +

 +
 A

 B
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(d) Connect the Lines Choosing Different Stubs for the Cen-
tral Charge: Reconnect the lines with a small change in what
stub goes where, giving a field map that has a weaker field in-
side the half-circle. Note, the field spacing is consistent with the
vectors we drew.

 +

 +  +

 +
 A

 B
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Chapter 8

Electric Dipoles

It requires a lot of energy to produce a net charge, so most objects do not have a net charge. All objects
however contain charge and often the centers of positive and negative charge in an object are at different locations.
The behavior and shape of the electric field of these systems is determined by their electric dipole moment.

8.1 Behavior of Electric Dipoles

This section covers skills and problems involved in drawing dipole fields, deducing the direction of dipole
moments from fields, and predicting the behavior of dipoles in the field of other charge. When drawing field maps
for systems with non-zero total charge, we use the fact that, far from a distribution of charges with non-zero net
charge, the electric field is radial. What happens when the total charge of the distribution is zero? Let’s draw it.
Using eight stubs per charge, the field for equal and opposite point charges is drawn below. The dashed circle is
the circle at infinity, which we have been using for fields with net charge. Note that no lines escape to infinity,
which is correct because the system has zero net charge. The shape of the field outside the dashed line is the
characteristic shape a dipole field. The strength of a dipole is given by a vector ~p, the dipole moment.
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p

Moments of the Electric Field: Any electric field can be expressed as a series of
characteristic fields whose strength is determined by their “moment”. The net charge
of a system is the system’s monopole moment. The next moment is the dipole moment,
defined below. Higher order moments exit: quadrapole, octopole, etc. The long range
shape of the field is determined by the lowest order non-zero moment. The long range
shape of a system with net charge is radial, determined by its monopole moment. If
monopole moment is zero and the dipole moment non-zero, the long range shape is
dipole.

Definition Dipole Moment Vector: The dipole moment vector for a system with zero
net charge, ~p, can be calculated for a collection of charges qi located at the points ~ri

using

~p =
∑

i

qi~ri

Example 8.1 Dipole Moment of Three Charges
Problem: A 2nC charge is at the origin. Two −1nC charges are at (1cm, 0, 0) and (1cm, 1cm, 0). Calculate
the dipole moment vector.

Solution

The dipole moment vector is by definition

~p =
∑

i

qi~ri = (2nC)(0, 0, 0) + (−1nC)(1cm, 0, 0) + (−1nC)(1cm, 1cm, 0)
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~p = (−2 × 10−11Cm,−1 × 10−11Cm, 0)

Dipole Moment for Equal and Opposite Charges: For a dipole formed of two equal
and opposite point charges, the dipole moment points from the negative charge to the
positive charge and has magnitude p = qd where d is the separation between the charges
and q is the charge of the positive charge.

Direction of the Dipole Moment Vector: The dipole moment vector points from
the center of the negative charge to the center of the positive charge of the charge
distribution.

The strength of the dipole, the size of |p|, increases with the amount of charge separated, q, and the amount of
separation, d, as illustrated below.

Small Amount of 
Charge Separation - More Charge Separated,

 Dipole Moment Larger

     Less Separation,
Dipole Moment Smaller

Small Dipole Moment

p p
p

Far from the charges, all charge distributions with zero total charge but non-zero dipole moment have the
characteristic dipole electric field. If you see a dipole field, you should be able to draw the dipole moment and
tell me that the total charge is zero.

p
p
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The mathematical form of the electric field for a dipole, far from the dipole, is somewhat complicated. We
state it for your reference,

Electric Dipole Field: The electric field of a point dipole at the origin with dipole
moment ~p is

~E(~r) = k
3r̂(~p · r̂) − ~p

r3
.

This is the field of a point dipole or the field far from a system with zero charge but
non-zero dipole moment.

Simplified Electric Dipole Field: The expression above for the dipole field can be
simplified if a direction for the dipole moment is chosen and only the strength of the
field along the axes is computed. If ~p = pŷ, then along the ŷ axis,

~E(0, y, 0) =
2kpŷ

|y|3 .

and along the x-axis

~E(x, 0, 0) = −kpŷ

|x|3

Notice that the strength of the dipole field falls off as 1/r3 whereas the field of a distribution with net charge
falls off as 1/r2. This is why, far from a distribution with net charge, we see only the radial field of a point charge
with the total charge of the distribution.

Example 8.2 Calculating the Dipole Field
Problem: An electric dipole is formed by equal and opposite point charges with charge ±1nC at ±0.2cmŷ. The
dipole moment points in the +ŷ direction. Calculate the field at 5m along the x axis and the y axis.

Solution

(a) Calculate the dipole moment: The dipole moment of a simple two charge dipole is p = qd where
d = 0.4cm is the separation of the charges p = qd = (1 × 10−9C)(4 × 10−3m) = 4 × 10−12Cm.
(b) Calculate the field along the x-axis: The field point at 5m along the x-axis is far from the charges, so
the formula for the long range dipole field can be used

~E = −kpŷ

|x|3 = − (8.99 × 109 Nm2

C2 )(4 × 10−12Cm)ŷ

|5m|3 = −2.88 × 10−4 N

C
ŷ

(c) Calculate the field in the y direction: The field point at 5m along the y-axis is far from the charges, so
the formula for the long range dipole field can be used

~E =
2kpŷ

|y|3 =
2(8.99 × 109 Nm2

C2 )(4 × 10−12Cm)ŷ

|5m|3 = 5.75 × 10−4 N

C

8.2 Drawing Dipole Fields

When drawing a dipole electric field map, we need to use a field at infinity that has a dipole shape. The
dipole field will arise naturally from our normal process of drawing electric field maps but for some reason everyone
scrunches all the field down very close to the charges. Therefore, to get the correct long range field it helps to
draw the dipole field at infinity first. So to draw a dipole field, we use the same process as for a field with net
charge (monopole), except replace the long range part with the following two steps:

Determine Direction of Dipole Moment: The dipole moment is directed from the
center of negative charge to the center of positive charge. Draw it on your figure.
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Draw a Dipole Long Range Field: Draw the circle at infinity and draw a dipole field
matching your dipole moment.

Example 8.3 Field of Point Dipole
Problem: Draw the electric field of an electric dipole formed of two point charges with dipole moment in the
+ŷ direction.

Solution

(a) Draw the Charges: Draw the electric charges at the given locations to
scale. Since we are given an electric dipole along the y-axis, draw equal and
opposite charges along the y-axis.

y

x

(b) Draw the Dipole Moment: The dipole moment vector is drawn from
the center of negative charge to the center of positive charge. For two point
charges, the electric dipole is drawn from the negative to the positive charge.

y

x

p

(c) Draw the Long Range Dipole Field: For a charge distribution that has zero net charge and a non-zero
dipole moment, the electric field far from the charge has the characteristic shape of an electric dipole.
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p

(d) Draw Stubs of Field Lines: I chose eight lines per charge. The field lines exit at the positive charge and
enter at the negative.

p
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(e) Connect the Lines: Connect and smooth the
inner and outer lines. Jiggle until you get something
appropriately symmetric.

p

8.3 Qualitative Dipole Behavior

Systems of charge whose lowest order non-zero moment is the dipole moment behave differently than systems
of charge with net charge. Our model for an electric dipole will be two equal and opposite charges at each end
of a stick.

Barbell Model of Dipole: When considering the motion of
dipoles, we will model them using equal and opposite point
charges on a stick, as shown to the right.  +

 _ p

Our barbell dipole is placed in a number of electric fields below. The force on each charge, ~F+ and ~F−, and

the net force, ~Fnet = ~F+ + ~F−, on the dipole is drawn in each case.

 Figure (a) Equilibrium

 +

 _

 Zero Net Force

 Figure (b) Away from Equilibrium  Figure (c) Non-Uniform Field

 +

 _

 Non-Zero Net Force Zero Net Force

 +

 _

pp p

F+

F−

F+

F−

F+

F−

Fnet
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In figure (a) the field is uniform and the dipole moment ~p aligns with the field. The net force is zero and the
forces on the dipole do not tend to rotate the dipole. This is the equilibrium position of the dipole. In figure (b),
the dipole is rotated away from equilibrium. The net force is still zero, but the force on each charge tends to
rotate the dipole toward equilibrium.

Dipoles Rotate to Align with Field: A dipole placed in an electric field is at equilib-
rium when the dipole moment points in the same direction as the field line. A dipole
that is not at equilibrium will tend to rotate toward alignment with the field line.

Dipoles In a Uniform Field Feel Zero Net Force: If a dipole is placed in a uniform
electric field, constant through space, then the total force (but not the torque) is zero
since the forces on the plus and minus charge are equal and opposite. So the dipole
rotates but its center of mass stays in the same place.

In figure (c), the field is not uniform. The positive and negative charges forming the dipole experience forces
of different magnitudes and directions and therefore there is a net force on dipole.

Net Force on Dipoles In a Non-Uniform Field: If a dipole is placed in a non-uniform
field, the two charges experience difference forces, and the direction of the net force
must be determined by adding these forces.

Example 8.4 Electric Dipole in Uniform Field
Problem: A uniform electric field is directed in the +x̂ direction. A barbell dipole with dipole moment direction
in the +ŷ direction is placed in the field.

(a)Draw the field and the barbell dipole.

(b)Draw the electric force vectors on the charges at the ends of the dipole.

(c)Indicate the direction of rotation of the dipole.

Solution to Part (a)

The field lines are evenly spaced since we are told the field is uniform. The dipole moment, in the +ŷ direction
here, always points from the negative to the positive charge. See figure.

Solution to Part (b)

The force on the positive charge will point the same direction as the field; the force on the negative charge will
point in the opposite direction. The forces have the same magnitude since the field is uniform. See figure.

Solution to Part (c)

The dipole will rotate in the clockwise direction based on the
forces drawn. The dipole moment will tend to align itself with
the field lines.

y

x

+

−

F+

F−

p Rotation
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8.4 Dipole Mechanics

We argued in previous section that a dipole will rotate to align with an uniform electric field, but feel no net
force. Since the dipole tends to rotate, it must experience a net torque. If the field is not uniform, the dipole
will experience a net force. This means the force depends on how the field changes. If the dipole is allowed to
rotate it will come to equilibrium (if there are losses in the system) with its dipole moment aligned with the field.
This behavior implies the dipole is seeking the minimum in some potential energy function. So to quantitatively
describe the mechanics of an electric dipole, we need to evaluate the torque, net force, and potential energy.

8.4.1 Potential Energy of a Dipole in an Electric Field

To calculate the potential energy of an electric dipole with orientation θ with respect to a uniform field,
we have to calculate the work required to rotate the dipole from the location of zero potential energy to the
orientation θ. In figure (a) below, the dipole is drawn in its minimum energy orientation, aligned with the field.
In figure (b), the dipole has been rotated an angle θ away from equilibrium. In both figures, the dipole moment
vector, ~p, is drawn.

 Figure (a) Minimum Energy  Figure (b)

 +

 _

 d

 +

 _

∆h

∆h

θ

p

p

The difference in potential energy, ∆U , from figure (a) to figure (b) is the work, W , an external agent would
have to do to rotate the dipole. Work is force times the distance in the direction of the force. Both the positive and
negative charge moved a distance ∆h against the force of field. The work done is W = F+∆h+F−∆h = 2qE∆h,
where F+ is the force on the positive charge, q is the magnitude of the positive charge, and E is the electric field.

If θ is the angle between the dipole moment vector, ~p, and the field ~E, and d is the length of the dipole, then
∆h = d/2 − d/2 cos θ. Substituting gives the change in potential energy to rotate from figure (a) to figure (b).

∆U = 2qE

(

d

2
− d

2
cos θ

)

= −pE cos θ − pE

where I have used |~p| = qd. It is customary to choose the zero of potential energy so the pE goes away.

Potential Energy of an Electric Dipole: The potential energy U of an electric dipole
with dipole moment ~p in a uniform electric field ~E is

U = −pE cos θ = −~p · ~E

where θ is the angle between the dipole moment and the field. The second expression
uses the vector dot product, which we will review in Course Guide 11.

8.4.2 Torque on an Electric Dipole

An electric field tends to make an electric dipole rotate, and therefore exerts a torque on the dipole. An
electric dipole in a uniform electric field ~E is drawn below. The forces on each charge are also drawn.
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 +

 _

 Moment Arm

p

θ

F+

F−

From UPI, the torque τ exerted on the object is the force multiplied by the moment arm, the perpendicular
distance to the line of action of the force. The moment arm and lines of action are drawn above. The torque
will be calculated about the center of the dipole. The torque on the dipole in the figure causes it to rotate in the
counterclockwise direction. Both forces, ~F+ and ~F−, exert a torque on the object. The total torque is the sum
of the torques of the two forces, τ = τ+ + τ−. The length of the moment arm is (d/2) sin θ for both forces if the
separation of the charges is d and the angle θ is measured from the dipole moment to the field. The angle θ is
positive above. The force on each charge is qE. The total torque is then τ = qEd sin θ or τ = pE sin θ where I
have used |~p| = qd.

Torque on an Electric Dipole: The torque, τ , on an electric dipole with dipole moment
vector ~p in an electric field ~E is

τ = pE sin θ

where θ is measured from ~p to ~E. A positive torque causes a counterclockwise angular
acceleration.

When we reach magnetic dipoles and have some experience with the vector cross product, the above expression
will be re-written as ~τ = ~p × ~E.

8.4.3 Force on an Electric Dipole in a Non-Uniform Field

We have already argued that a uniform electric field exerts zero
net force on an electric dipole. An electric dipole is drawn below in
a non-uniform electric field that points generally in the y direction
at the dipole. The force on the charges forming the dipole are
drawn as well as the net force, ~Fnet. The x-component is an
artifact of how large I have drawn the dipole. As d, the length of
the dipole, gets smaller the x component vanishes.

 +

 _ y

 x

θ F+

F−

Fnet

p

We would like to estimate the force on the dipole in the limit the length of the dipole, d, is small. If the field points

generally in the y direction at the location of the dipole then at the dipole we can write the field ~E = E(y)ŷ.
The net force will point generally in the y direction and have magnitude, Fnet = qE(y+) − qE(y−) where y+ is
the location of the + charge and y− is the location of the − charge. If the separation of charges d is small, then
this is approximately

Fnet = q
dE

dy
(y+ − y−) = q

dE

dy
(d cos θ) = p

dE

dy
(cos θ)

where θ is the angle between the dipole moment and the field and once again I have use |~p| = dq.
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Force on an Electric Dipole in a Non-Uniform Field: The net force on an electric
dipole with dipole moment ~p in an electric field the points in the ŷ direction, ~E = E(y)ŷ,
is

Fnet = p
dE

dy
(cos θ)

where θ is the angle between the dipole moment vector and the y axis.

Note, if the dipole moment aligns with the field (θ = 0), the dipole feels a force toward stronger field. If the
dipole anti-aligns with the field (θ = 180◦), the dipole feels a force toward weaker field.

Example 8.5 Rotation of a Water Molecule
Problem: The NIST database gives the dipole moment of water as p = 1.85debye = 6.18× 10−30Cm. As you
work through these databases the profusion of different systems of units is really annoying. A water molecule is
placed in the electric field of the golf tube modelled as an infinite line of charge along the z axis. The golf tube
has linear charge density λ = −0.10µC/m. The molecule is 4cm from the axis of the tube along the x axis. The
angle between the dipole moment of the molecule and the electric field is θ = 45◦.

(a)Calculate the potential energy of the molecule.

(b)Calculate the torque exerted on the molecule by the field.

(c)Calculate the net force on the molecule.

Solution to Part (a)

The electric field of the golf tube at the water molecule is

E =
λ

2πε0d
=

−0.1 × 10−6C/m

2π(8.85 × 10−12 C2

Nm2 )(0.04m)
= −45000

N

C

The potential energy of an electric dipole in an electric field is

U = −pE cos θ = −(6.18×10−30Cm)(−45000) cos 135◦ = 2.0×10−25J

where θ = 135◦ is the angle between the dipole and the field.
This drawing is way out of scale, a molecule is tiny, so we can
pretend E is in the same direction at either end of the dipole.

 _

 +
θ

α

p

Solution to Part (b)

The magnitude of the torque on the water molecule is

|τ | = pE sinα = |(6.18 × 10−30Cm)(−45000
N

C
) sin 45◦| = 2.0 × 10−25Nm

where α is the angle between the dipole moment and the x axis. Notice that torque and energy have the same
units 1 Joule = 1Nm.

Solution to Part (c)

The force on the dipole is

F = p
dE

dr
cos θ
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The derivative of the electric field is
dE

dr
=

d

dr

λ

2πε0r
= − λ

2πε0r2

The force is then

F = p
dE

dr
cos θ = − pλ

2πε0r2
cos θ = − (6.18 × 10−30Cm)(−0.1 × 10−6C/m)

2π(8.85 × 10−12 C2

Nm2 )(0.04m)2
cos 45◦ = 4.9 × 10−24N

The positive sign indicates the force is outward from the golf tube.
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Chapter 9

Continuous Charges

With Coulomb’s Law, ~E = kqr̂/r2, and the Law of Linear Superposition, we can calculate the electric field of
any charge distribution. In this chapter we will use the two laws to calculate the electric field of some continuous
charge distributions.

9.1 Thinking About Continuous Systems of Charge

A continuous charge distribution contains electric charge spread out through space. The distribution may be
a linear charge density spread on a curve, a surface charge density spread on a surface, or a volume charge density
spread throughout a volume. To calculate the field of any distribution, divide it into smaller chunks that can
be approximated as point charges, calculate the field of each chunk at the desired point, and add using linear
superposition.

Consider a linear charge density λ(s) spread along the curve drawn below. The variable s measures the distance
along the curve from one end of the curve.

 Psi

sj

riP

 EiP

 EjP

rjP

If calculus did not exist, what has to be done to calculate the field is pretty obvious, cut the curve into small
bits of length ∆s, calculate the field of each bit, and add using linear superposition. Let the ith bit be at the
location si along the curve and contribute a field ~EiP at the point P . The contributions of the ith and jth
segment are drawn above. The charge of each piece is the charge density multiplied by the length of the piece,
qi = λ(si)∆s. The total electric field is the sum of the fields of each piece,

~EP =
∑

i

kqi

r2
iP

r̂iP =
∑

i

kλ(si)∆s

r2
iP

r̂iP

This expression could be summed directly on a computer to any accuracy or converted to an integral using

si ⇒ s ∆s ⇒ ds r̂iP ⇒ r̂P (s) riP ⇒ rP (s)
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where now both the distance and the unit vector are functions of the length along the curve.

~EP =

∫

kλ(s)ds

rP (s)2
r̂P (s)

To me, the sum looks easy and the integral looks horrible, even though they are exactly the same thing. This is
why I stress thinking in terms of the sum first.

The same process can be carried out for charge spread over a surface. Suppose a surface occupies part of the
x-y plane. The surface is covered with a surface charge density σ(x, y). We wish to calculate the electric field
at a point P at the point ~rP . Imagine dividing the surface into small squares of width ∆x and height ∆y. Let
the center of each square be ~rij = (xi, yj , 0). The displacement vector from one of the squares to point P is
~rijP = ~rP − ~rij . The charge of each square is qij = σ(xi, yj)∆x∆y. The electric field of the surface at point P
is

~EP =
∑

i

∑

j

kqij

r2
ijP

r̂ijP =
∑

i

∑

j

kσ(xi, yj)∆x∆y

r2
ijP

r̂ijP

Those of you who have had Cal III should see the two dimensional integral. A similar expression can be written
for the volume charge distribution.

9.2 One Dimensional Problems

Let’s begin calculating the electric field of continuous systems with a couple one-dimensional systems. We’ll
restrict ourselves to lines and circles. This section presents two examples of calculating the electric field of a
charge distribution where the charge is spread out over a line in space. In the first example the charge density
is constant (uniform). In the second example, the charge density changes from point to point along the line.
Before beginning, our calculations will be simplified if we substitute the definition of the unit vector, r̂ = ~r/r,
into Coulomb’s law.

Alternate Form of Coulomb’s Law: The electric field at point P due to a point
charge q at location ~ri is

~EP =
kq

r2
iP

r̂iP =
kq

r3
iP

~riP

where ~riP = ~rP − ~ri is the displacement vector from the point i to the point P .

Example 9.1 Field of Line Charge along Line
Problem: A finite line charge lies along the x-axis with its center
at the origin. It has a uniform linear charge density λ. The line
charge has length 2L as drawn to the right.

(a)Calculate the electric field at a point R > L along
the x-axis. This will be a formula not a number.

(b)Use your formula to calculate the electric field at
R = 2L.

(c)Compare the field in (b) to the field you would get if
you approximated the line charge by a point charge
at the origin with charge 2λL the total charge of the
line charge.

 x

 y

 -L  L  R

Solution to Part (a)
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(a) Divide the Line Charge into Segments: Cut the line
charge up into segments of length ∆x and center xi as drawn to
the right. The field points in the x̂ direction at R, so we just have
to calculate the magnitude of the electric field of each segment,
Ei = kqi/d2

i , where di is the distance from the center of the
segment to the point R. Observing the diagram to the right,
di = R − xi. The charge of the segment is λ∆x. So using linear
superposition,

E(R) =
∑

i

kqi

d2
i

=
∑

i

kλ∆x

(R − xi)2

 x

 y

 -L  L

 Rxi

∆x

di

(b) Convert Sum into Integral and Do the Integral: Let the segments become infinitely small, so ∆x → dx,

xi → x, and
∑

i →
∫ L

−L

E(R) = kλ

∫ L

−L

dx

(R − x)2

Use the u - substitution, u = R − x, so du = −dx,

E(R) = −kλ

∫ R−L

R+L

du

u2

This is an integral of the form,
∫

rndr = rn+1

n+1 + C with n = −2, so
∫

r−2dr = − 1
r + C.

E(R) = kλ

(

1

u

)∣

∣

∣

∣

R−L

R+L

= kλ

(

1

R − L
− 1

R + L

)

If you got here, you would get full credit on homework or an exam. I’m going to simplify a bit,

E(R) = kλ

(

R + L

(R − L)(R + L)
− R − L

(R + L)(R − L)

)

= kλ

(

R + L − (R − L)

(R2 − L2)

)

=
2kLλ

(R2 − L2)

Note, we get the field of a point charge if R → ∞, E(R) → 2kλL/R2 = kQ/R2. Be sure to put the vector back

in at the end, ~E = E(R)x̂.

Solution to Part (b)

Just substitute R = 2L into the formula,

E(2L) =
2kLλ

(2L)2 − L2
=

2

3

kλ

L

The units look wrong here, but λ has units is C/m not C.

Solution to Part (c)

A point charge of charge Q = 2λL produces an electric field

E(2L) =
kQ

R2
=

k(2λL)

(2L)2
=

1

2

kλ

L

So in this case we would make a substantial error by approximating the finite line charge as a point charge. This
approximation gets better as we get farther from the charge.

Example 9.2 Field of a Variable Line of Charge
Problem: A line of charge with linear charge density λ(x) = γx, where γ is a constant, lies along the x axis
from 0 to L. Calculate the electric field at a point a distance R along the positive y axis.
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Solution

(a) Divide the System into Segments: Imagine dividing the
system into segments of length ∆x. The ith segment is drawn to
the right. The electric field of the i segment is given by Coulomb’s
law

~EiP =
kqi

r3
iP

~riP

So we need qi, ~riP and riP .

 x

y

 P

 0  L

 R

 EiP

riP

xi

∆x

(b) Calculate the charge of the ith segment: The charge, qi, is the length of the segment multiplied by the
charge density, qi = λ(xi)∆x = γxi∆x.
(c) Calculate the Displacement Vector: The displacement vector is by definition, ~riP = ~rP −~ri. The position
of the point P is ~rP = (0, R, 0). The position of the segment i is ~ri = (xi, 0, 0), so the displacement vector is
~riP = (−xi, R, 0), which is consistent with our drawing.
(d) Calculate the length of the displacement vector: The length of ~riP is riP =

√

x2
i + R2.

(e) Use Linear Superposition: The total electric field at point P is the sum of the fields of all the segments

~EP =
∑

i

kqi

r3
iP

~riP =
∑

i

kγxi∆x

(x2
i + R2)

3
2

(−xi, R, 0)

(f) Convert the Sum to an Integral: Let ∆x ⇒ dx, xi ⇒ x, and
∑

i ⇒
∫ L

0
,

~EP =
∑

i

kγxi∆x

(x2
i + R2)

3
2

(−xi, R, 0)

=

∫ L

0

kγxdx

(x2 + R2)
3
2

(−x,R, 0)

This is actually three integrals, one each for the x, y, and z component.

~EP =

(

−
∫ L

0

kγx2dx

(x2 + R2)
3
2

,

∫ L

0

kγxRdx

(x2 + R2)
3
2

, 0

)

At this point the physics is done.
(g) Separate into Components: Since we are calculating an electric field, we need values for the x, y, and z

components of the field. ~EP = (EPx, EPy, EPz). The z component is zero, so we need

EPx = −kγ

∫ L

0

x2dx

(x2 + R2)
3
2

and

EPy = kγR

∫ L

0

xdx

(x2 + R2)
3
2

(h) Try Calculus: I typed x/(xˆ2 + Rˆ2)ˆ(3/2) into integrals.com and it told me
∫

xdx

(x2 + R2)
3
2

= − 1√
x2 + R2

+ C
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I typed xˆ2/(xˆ2 + Rˆ2)ˆ(3/2)into integrals.com and it told me

∫

x2dx

(x2 + R2)
3
2

= − x√
x2 + R2

+ ln(x +
√

x2 + R2) + C

where C is the constant of integration. The Log reported at the web site is actually the natural logarithm, which
we will denote as ln.
(i) Use the integrals: Substituting the limits 0 and L,

EPx = −kγ

∫ L

0

x2dx

(x2 + R2)
3
2

= −kγ

(

− x√
x2 + R2

+ ln(x +
√

x2 + R2)

)
∣

∣

∣

∣

L

0

EPx = −kγ

(

− L√
L2 + R2

+ ln(L +
√

L2 + R2) − ln(R)

)

EPy = kγR

∫ L

0

xdx

(x2 + R2)
3
2

= kγR

(

− 1√
x2 + R2

)∣

∣

∣

∣

L

0

EPy = kγR

(

− 1√
L2 + R2

+
1

R

)
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Chapter 10

Symmetry

10.1 High Symmetry Systems

In Course Guide 7, we learned to draw the electric field map for collections of point charges and for some
continuous charge distributions. Those field maps had to have the same symmetry as the system of charge.
Symmetry is a very important idea in physics because if a system has a certain symmetry, the physical description
of the system must also have that symmetry. In this chapter, we will examine systems where the symmetry allows
us to guess the shape of the field.

Symmetry: A symmetry of a system is a transformation of the system which leaves the
system unchanged. For example, in some of our field maps if the charges were reflected
through a plane the same system of charge resulted.

• Planar Symmetry—The system is unchanged if it is moved
(translated) in a plane. We will work with infinite planes
that have uniform surface charge and infinite slabs of charge
that have uniform volume charge density.

Planar Symmetry

Plane Slab

• Cylindrical Symmetry—A system with cylindrical symmetry is unchanged when it is rotated about its axis
or translated down its axis. We will build systems of cylindrical symmetry out of infinitely long straight lines
of charge; thin, infinitely long cylindrical shells with uniform surface charge; infinitely long tubes of charge
with uniform volume charge density; and infinitely long thick cylindrical shells with uniform volume charge
density.
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Cylindrical Symmetry

shell

line

thick shell

tube

• Spherical Symmetry—A system with spherical symmetry is left unchanged by any rotation about its center.
We will build spherically symmetric systems of charge out of concentric point charges, thin spherical shells
of charge with uniform surface charge density, and spherical volumes of charge as well as thick spherical
shells with uniform volume charge density.

Spherical Symmetry

point

thick shell
thin shell

sphere

charge

10.2 The Shape of a High Symmetry Field

A spherical system of charge is unchanged if it is rotated through any angle about its center, therefore the
field of a spherical system must be unchanged if rotated through any angle about the center of the system. A
little experimentation will convince you that this means the field must point straight outward from the center or
inward toward the center of the system, that is the field is radial. For a system with cylindrical symmetry the
same reasoning will convince you that the field points radially outward from or inward to the axis of the system.
Unfortunately, since we draw in two dimensions our spherical and cylindrical field maps look the same. Examples
of the fields of various cylindrical and spherical distributions of charge are shown below.
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Field of Point Charge or Line Charge: Graph-
ically, since we represent the line charge in two-
dimensions, a point charge and a line charge look
the same with lines radiating out from a dot. The
big difference is that for a line charge this is a true
representation of a cross-sectional slice of the field.
For a point charge, the number of lines in all three
dimensions is proportional to the total charge so we
have laid all these lines out flat.

Field of Shell of Charge: A spherical or cylindrical
shell of charge has only field lines outside the shell,
since a surface inside the shell encloses zero charge.

Volume of Charge: A uniform volume of charge has
field lines starting all through it. Note at the right
the field lines begin throughout the volume.

A system with planar symmetry is unchanged if translated along
the plane, rotated, and for a single plane reflected about its center.
This means that the field lines must point directly outward from
or inward to the plane. The electric field of the plane does not
change with the distance from the plane, which means far from a
planar charge distribution the field is that of a single plane with
the total charge density of the system. A single plane may be
reflected without changing the system, so the field far from the
planar system must be equal and opposite.

 Positively Charged Plane  Negatively Charged Plane

The Far Field of Planar Sys-
tem is Equal and Opposite:
For the planar system to the
right, the electric field in re-
gion I must be equal and op-
posite the field in region IV, or
more generally the field in the
outermost regions are equal
and opposite.

 I  II  III  IV

10.3 Drawing Spherical and Cylindrical Systems

Drawing the field map is an important part of understanding a system of charge, a good check on the
calculation, and will be a crucial part of the solution process when conductors and dielectrics are introduced into
the mix. The most intuitive highly symmetric system is the spherical system. It is somewhat easier than the
planar system because there is a natural starting point, the center of the distribution. To draw the map, we use
symmetry to deduce the shape of the field and Gauss’ law Version 0 to determine how many field lines to draw.
Gauss’ law will be applied to some carefully chosen surfaces, which we will call Gaussian surfaces.

Example 10.1 Drawing Electric Field Map Spherical Symmetry
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Problem: Draw the electric field map of a −1µC point charge surrounded by a spherical shell of charge with
surface density σ = 130µC

m2 and radius 5cm concentric with the point charge.

Solution

(a) Compute the Total Charge of Each Object: The total charge of the point charge is given as qpoint =
−1µC. The total charge of the shell is

qshell = 4πr2
shellσ = 4π(0.05m)2(130µC/m2) = 4µC.

(b) Select a Number of Lines per Charge: Gauss’ Law states that the number of field lines exiting a region
is proportional to the total charge inside the region. The first step in drawing a continuous field map is the same
as the first step of drawing the field map for a system of point charges, select a number of lines per charge. I
select 4 lines per 1µC.

(c) Draw the System of Charges: A shell is a very thin sheet of
charge. Label a set of regions where Gaussian surfaces in different
regions enclose different amounts of charge. Use Roman numerals
to label the regions. There are two regions in this problem: inside
the shell and outside the shell. It often helps to label areas with
no charge “Air”.

I

II

System of Charge Divided into Regions

 shell

 Air

 Air

qpoint

(d) Apply Gauss’ Law to Region I: Apply Gauss’ law to the
spherical surface drawn in region I. By Gauss’ Law, the charge
enclosed by a Gaussian surface in region I is proportional to the
field lines exiting the surface. In region I, a Gaussian surface
encloses only the point charge with charge −1µC = 4 lines going
inward. The direction of the lines is determined by the sign of the
net charge. Draw four lines going inward in region I. I have tried
to make the Gaussian surface appear spherical, but I will usually
just draw a circle.

Gaussian Surface

 I

 II
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(e) Apply Gauss’ Law to Region II: Continue to work out
from the center. Apply Gauss’ Law in region II. The total charge
enclosed by a Gaussian surface in region II is qpoint + qshell =
−1µC + 4µC = 3µC. If 4 lines exit a Gaussian surface for each
1µC, then 12 lines exit a Gaussian surface containing 3µC. Draw
the 12 lines exiting the charged shell through the charged surface.
A quick check shows that the shell has 12 lines leaving on the
outside and four lines leaving on the inside, for a total of 16 lines
leaving the object. Since it has a total charge of 4µC this had
better be the case if we did it right!

 Gaussian Surface

 I

 II

(f) Draw the charges: Draw positive charges where lines begin and negative charge where lines end. If all went
well you drew a number of charges proportional to the total charge of the object. The charges are drawn above.
Note there are 16 + charges drawn which is correct for 4µC.

Drawing a field map for cylindrically symmetric distributions of charge is the same as for spherical distributions
except that, rather than allocating field lines based on total charge, field lines are allocated based on charge per
unit length.

10.4 Drawing Planar Systems

One can also draw the field maps of systems with planar symmetry by using Gauss’ law Version 0 on a
cylindrical Gaussian surface. Next chapter, we will learn to calculate the fields for planar systems. We will simply
draw the field maps for the planar systems with line densities proportional to the computed strengths.
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Chapter 11

Gauss’ Law

In this chapter, we learn how to calculate the electric field of the infinite line and infinite plane of charge using
Gauss’ Law. Course Guide 7 and Course Guide 10 applied Gauss’ law qualitatively, now its time to do the math.

11.1 Electric Flux

To turn the qualitative expression of Gauss’ law (Version 0) into a quantitative expression appropriate for
calculations, a mathematical analog for a field line must be found. This will involve manipulation of the vector
operation, the dot product, and a new physical quantity, the electric flux.

11.1.1 Working with Dot Products

A dot product is a vector operation which takes two vectors and yields a number. Some intuition about the
dot product is helpful in the understanding of Gauss’ Law. We can define the dot product in two equivalent forms:

Definition of Dot Product: The expression ~A · ~B is a dot product and is defined as:

~A · ~B = AxBx + AyBy + AzBz.

Angle Form of Dot Product: The dot product ~A · ~B can also be computed as:

~A · ~B = |A||B| cos(θ),

where θ is the angle from ~A to ~B.

The angle form of the dot product allows easy computation of two important special cases, parallel vectors and
perpendicular vectors. If two vectors are perpendicular, the angle between the vectors is 90◦, cos 90◦ = 0, so the
dot product is zero. If two vectors are parallel, that is if they point in the same direction, the angle between the
vectors is zero, cos 0 = 1, giving ~A · ~B = AB. If one of the vectors is a unit vector, which by definition has length
1, ~A · B̂ = A. If the vectors are anti-parallel, point in opposite directions, then ~A · ~B = −AB

Using the Dot Product to Take the Pro-
jection of a Vector: If one of the vectors
in a dot product is a unit vector, then the
dot product returns the length of the vector
in the direction of the unit vector. The fig-
ure to the right illustrates this for the dot
product C = ~A · B̂.

C

A
B
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11.1.2 Definition of Electric Flux

The mathematical quantity which replaces the geometric field line in Gauss’ Law is called the electric flux.
The symbol for electric flux is φe where the Greek symbol is pronounced “fi”, like fe fi fo fum. The electric flux
through a surface is qualitatively the amount the electric field points straight through the surface multiplied by
the area of the surface.

Electric Flux of a Flat Surface in a Uniform Field: The electric flux through a flat
surface with surface area A in a uniform electric field E is

φe = EA cos θ

where θ is the angle between the electric field and the normal to the surface.

Definition Surface Normal:
A surface normal is a vector
which points straight out from
the surface; a vector that is
perpendicular to the surface.
A surface has two sides and
a normal vector for each side
at every point on the surface.
The symbol n̂ is used to de-
note the normal to the surface.

n

n

n

n

Normals of Simple Surfaces: A sphere, centered at the origin, has outward surface
normal r̂ where the radius vector ~r = (x, y, z). A cylinder centered on the z axis has
outward surface normal r̂ where ~r = (x, y, 0) A surface in the x − y plane has two
surface normals, ẑ and −ẑ.

The electric flux through a surface is proportional to the number of field lines crossing the surface. Let’s examine
a flat surface in a uniform field. A side view of a square loop is shown below. As you can see, the number of
field lines passing through the surface depends on the area of the surface and the angle the surface makes with
the field.

Normal Parallel to Field angle Normal at Angle to Field

n n θ

Example 11.1 Flux through Hoop in Earth’s Field
Problem: The Earth has an electric field of 150N/C downward. A hula-hoop (a ring of radius 0.5m) lies on the
ground. What is the magnitude of the electric flux through it?
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Solution

Since the field is parallel to the normal of the hoop, the flux is φe = | ~E|A. The area of the hoop is A = πr2,

φe = | ~E|πr2 = 150
N

C
π(0.5m)2 = 117.8

N

C
m2.

The electric flux can be defined for surfaces that aren’t flat and fields that aren’t uniform.

Definition Electric Flux: The electric flux, φe, through a surface S is defined as

φe =

∫

S

( ~E · n̂)dA,

where n̂ is the outward normal to the surface and dA is an element of area of the
surface.

If the electric field is uniform and the surface is flat, the electric flux can be re-written

φe =

∫

S

( ~E · n̂)dA = ( ~E · n̂)

∫

S

dA = ( ~E · n̂)A

where A is the area of the surface. Using the properties of the dot product, we can re-write this as

φe = | ~E||n̂|A cos θ = EA cos θ

since |n̂| = 1. The angle θ is the angle between the surface normal and the electric field. Therefore, we recover
our definition of electric flux for a flat loop.

11.1.3 Qualitative Meaning of Flux

The word flux in common usage implies flow or movement. We say things are “in flux”. The math underlying
Gauss’ law is used for virtually every flow process: water flow, air flow, heat flow, and quantum probability flow.
To understand flux, it helps to think of it in terms of a fictitious flow of the electric field. To most people, the
clearest picture of flux comes when they consider rain drops falling into a bucket. Define the flow of raindrops as

F =
number of drops

Area · time

We want to use this flow to predict how much rain per unit time falls in a bucket with a square top with dimensions
ℓ. The area of the top of the bucket is A = ℓ2. Naturally, we consider a drop to be in the bucket if it crosses
the plane formed by the top of the bucket (the surface bounded by the curve formed by the edges of the top of
the bucket). I have drawn rain falling vertically downward and a bucket in various orientations below. I have also
drawn the top view of the bucket, what an observer looking directly down from the top would see.
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 (a) Bucket on Ground

Top View

 (b) Bucket Tipped  (c) Bucket On Side

 P

θ

Area=
2

Area=
2
cos(θ)

Area=0

The rain drops per unit time falling into the bucket, the flux of drops through the surface bounded by the
top of the bucket, is proportional to the area of the top of the bucket projected on the ground. In figure (a), the
area projected on the ground is A = ℓ2 and the drops per unit time entering the bucked is FA. In figure (b), the
bucket is tipped and the projected area is ℓ2 cos θ = A cos θ, and the drops per unit time entering the bucked is
FA cos θ. In figure (c), the projected area is zero and no drops enter the bucket. If θ is the angle the normal to
the surface bounded by the top of the bucket makes with the direction of the falling drops then all three cases can
be written FA cos θ. If electric field replaces the flow of raindrops, then the flux of electric field into the bucket
would be EA cos θ, exactly the mathematical expression for flux in a uniform field.

11.1.4 What is a Surface Integral?

Time to think like a physicist, not a mathematician. The electric flux involves a surface integral. We will never
actually do the integral, but what is it really? Let’s take a surface immersed in an electric field. The electric field
has a magnitude and direction at every point on the surface. There is also a surface normal n̂ at each point on
the surface. The surface integral chops the surface into tiny squares with area Aij = ∆xi∆yj . For each square,

it multiplies the area by the value of ~E · n̂ at the center of the square and then sums it all up.

∫

S

( ~E · n̂)dA ⇒
∑

ij

( ~E · n̂)∆xi∆yj

Anytime you are dealing with an integral you can’t quite visualize, imaging doing it as a sum over small chunks.
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 Side View Top View - Electric Field at Angle 
with the Page

11.2 Gauss’ Law

It is finally time to write down the full mathematical form of Gauss’ Law. In the mathematical form of Gauss’
Law, the field line is replaced by electric flux, φe. Gauss’ Law (Version 0) stated that the charge enclosed in any
surface was proportional to the number of field lines leaving the surface, Q ∝ lines. If we replace field lines with
flux, then Q ∝ φe. All we need now is the proportionality constant.

Gauss’ Law: The electric flux outward through a closed surface is proportional to the
charge enclosed, Qenclosed, by the surface.

φe =

∫

S

( ~E · n̂)dA =
Qenclosed

ǫ0

The proportionality constant is ǫ0 = 8.85 × 10−12C2/Nm2 and pronounced “epsilon
naught”. The constant, ε0, is a fundamental constant of the universe which measures
the strength of the electric field. The normal n̂ is the outward surface normal, the
normal that points out of the surface.

Definition of a Closed Surface: A closed surface is a surface where you cannot go
from inside the surface to outside the surface without passing through the surface. A
balloon is a closed surface, a popped balloon is an open surface.

Gauss’ Law is a fairly extraordinary expression, since it allows the computation of an exceptionally nasty integral
expression simply by counting the charge enclosed. For example, consider the following:

Example 11.2 Gauss’ Law for a Dipole
Problem: A dipole is formed of ±Q charges separated by a distance L spaced along the x-axis and centered at
the origin.

(a)Compute
∫

S
( ~E · n̂)dA where S is a sphere of radius 2L centered at the origin and n̂ is the outward

normal.

(b)Repeat the computation if the +Q charge is removed.

Solution to Part (a)

By Gauss’ Law, since Qenclosed = 0,

φe = 0 =

∫

S

( ~E · n̂)dA.
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Solution to Part (b)

By Gauss’ Law, since Qenclosed = −Q,

φe =
−Q

ε0
.

Now, consider how you would do this integral without Gauss’ Law. The second question is, why would you
want to do this integral at all, and I can’t think of a single reason. For actual uses of Gauss’ Law, we need a little
help from symmetry.

11.3 Specializing Gauss’ Law to the Symmetry

11.3.1 Specializing Gauss’ Law for Spherical Symmetry

To actually compute an electric field with Gauss’ Law, we have to find some way to do the electric flux
integral. A surface integral is a very difficult thing to compute, so we avoid it. We only compute electric fields
with Gauss’ Law in situations where the electric field is constant and normal (perpendicular) to the surface. We
will call surfaces with these properties Gaussian surfaces. This allows the electric field to be brought outside the
integral and the remaining integral is simply the area of the Gaussian surface. The trick is different for each of
our high symmetry systems: planar, cylindrical, and spherical.
For a spherically symmetric charge distribution, use a spherical
Gaussian surface. By symmetry, the electric field must have the
same magnitude at all points on the Gaussian surface and be
normal to the surface, pointing radially outward, therefore ~E(r) =
E(r)r̂, where E(r) is a constant over the surface.

 Spherical

Gaussian Surface

Charge
Distribution

The electric flux through the Gaussian surface is by definition of electric flux:

φe =

∫

S

( ~E · r̂)dA.

where I have used n̂ = r̂ for a spherical surface. Substitute ~E = E(r)r̂ and use r̂ · r̂ = 1 to give

φe =

∫

S

( ~E · r̂)dA =

∫

S

(E(r)r̂ · r̂)dA =

∫

S

E(r)dA.

The electric field has the same magnitude at all points on the surface S, by symmetry, and can be brought out
of the integral

φe = E(r)

∫

S

dA.

The integral is just the area of the Gaussian surface, 4πr2,

φe = 4πr2E(r)
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By Gauss’ Law, the electric flux is proportional to the charge enclosed,

φe =
Qenclosed

ǫ0

Substituting the flux through the general surface, we get

4πr2E(r) =
Qenclosed

ǫ0

Gauss’ Law for Spherical Systems: Gauss’ law applied to a spherical surface with
radius r for a spherically symmetric system of charge reduces to

4πr2E(r) =
Qenclosed

ǫ0

11.3.2 Specializing Gauss’ Law to Cylindrical Systems

For systems with cylindrical symmetry, use a Gaussian surface
which is a cylinder of radius r and length L, co-axial with the
charge. The electric field points straight outward from the axis
of the system and can be written ~E = E(r)r̂. If the axis of the
system is the z axis then ~r = (x, y, 0)

 Cylindrical Gaussian Surface

 +

 +

 +

 +

 +

 Line Charge

The electric flux is by definition

φe =

∫

S

( ~E · n̂)dA

The field at the flat ends of the Gaussian surface is perpendicular to the normal of the surface, so there is no flux
out of the ends. Therefore, the integral has a non-zero value only on the curved sides. The outward normal of
the Gaussian surface is n̂ = r̂. By a reasoning similar to the spherical case,

φe =

∫

S

( ~E · n̂)dA =

∫

S

(E(r)r̂ · r̂)dA = E(r)

∫

S

dA

The surface area of a cylinder of length L and radius r excluding the ends is 2πrL. Apply Gauss’ Law,

φe = 2πrLE(r) =
Qenclosed

ε0

Gauss’ Law from Cylindrical Systems: Gauss’ law applied to a cylindrical surface of
radius r with length L for a system of charge with cylindrical symmetry reduces to

φe = 2πrLE(r) =
Qenclosed

ε0
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11.3.3 Specializing Gauss’ Law for Planar Symmetry

For a system with planar symmetry, apply Gauss’ Law to a Gaus-
sian surface which is a cylinder with end of area A whose ends
are parallel to the plane.

x

 +

 +

 +

 +

 Plane Charge

nl

nr

The electric flux for this Gaussian surface is

φe =

∫

S

( ~E · n̂)dA

Break the surface integral into an integral over the left end, the right end, and the sides.

φe =

∫

left

( ~El · n̂l)dA +

∫

right

( ~Er · n̂r)dA

+

∫

sides

( ~E · n̂sides)dA

where ~El is the electric field at the left end of the cylinder and ~Er is the electric field at the right end. The
integral over the sides is zero because the electric field is perpendicular to the surface normal at all times, so the
dot product is zero.

∫

sides
( ~E · n̂r)dA = 0. Let ~El = Elx̂ and ~Er = Erx̂. From the diagram, we can see n̂l = −x̂,

n̂r = x̂. Substitute this into Gauss’ Law,

φe =

∫

left

El(x̂ · (−x̂))dA +

∫

right

Er(x̂ · x̂)dA =

∫

left

−EldA +

∫

right

ErdA

since x̂ · x̂ = 1. By symmetry, the field is constant on the ends of the Gaussian cylinder and can be removed from
the integral,

φe = −El

∫

left

dA + Er

∫

right

dA

The integrals are simply the areas of the ends of the cylinder.

φe = −ElA + ErA

Apply Gauss’ law,

φe = −ElA + ErA =
Qenclosed

ε0
= (Er − El)A

For system above, the total charge enclosed in the Gaussian surface would be Qenclosed = σA, where σ is the
surface charge density of the plane.

Gauss’ Law for Planar Systems: For a system with planar symmetry, Gauss’ Law
applied to a cylinder with end of area A whose ends are parallel to the plane reduces to

φe = −ElA + ErA =
Qenclosed

ε0

where El is the electric field at the left end of the cylinder and Er is the electric field
at the right end of the cylinder.
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11.3.4 Another Way to Look At It

Well, that was a mess. If you look over what was done, each case involved finding a surface, S, where the
electric field was either parallel to the surface normal and constant or perpendicular to the surface normal at all
points. This allowed the calculation of the flux as φe = ( ~E ·n̂)A = EA for the parallel case and φe = ( ~E ·n̂)A = 0
for the perpendicular case. Gauss’ law applies to any surface; we will call surfaces with these special properties
Gaussian surfaces.

Definition of Gaussian Surface: A Gaussian surface is surface where the electric field
is constant and parallel to the surface normal or perpendicular to the surface at all
points on the surface.

If we let the area of the Gaussian surface with non-zero flux be Ag, then Gauss’ law assumes the much simpler
form φe = EAg = Qenc/ε0. For example, in spherical systems we use a spherical Gaussian surface of radius r,
the area of the surface is Ag = 4πr2 and the specialized form of Gauss’ law is φe = EAg = 4πr2E = Qenc/ε0.
The same expression we worked so hard to extract with vector methods. For cylindrical systems where the surface
has radius r and length L, the area is Ag = 2πrL, and Gauss’ law becomes φe = EAg = 2πrLE = Qenc/ε0. For
planar systems, we have to take care of the fact the flux is inward at the left side of the cylinder and has a negative
sign, −ElA, and outward at the right end of the cylinder, ErA, giving Gauss’ law as −ElA + ErA = Qenc/ε0.

Gauss’ Law Applied to a Gaussian Surface: If the area of the Gaussian surface with
non-zero flux is Ag, then Gauss’ law becomes

φe = EAg =
Qenc

ε0
.

11.4 Application of Gauss’ Law

This section presents examples of the calculation of the electric field in spherical, planar, and cylindrical
symmetry. Unlike previous electric field calculations where the electric field was computed at a single point, here
the electric field is computed at all points in space and reported as a function.

11.4.1 Applying Gauss’ Law to Spherically Symmetric Distributions of Charge

For a spherical system, the appropriate Gaussian surface is a sphere of radius r. The field is radial and has
the form ~E = E(r)r̂ Gauss’ law applied to this surface becomes

4πr2E(r) =
Qenclosed

ε0

Solving for E and writing the field as a vector yields

~E(~r) =
Qenclosed

4πε0r2
r̂

Notice, we had to add the direction of the field, r̂, back in to write the full electric field. We had to know the
direction of the field to choose our Gaussian surface to begin with.

We should start by applying Gauss’ law to a point charge of charge q. If we don’t recover Coulomb’s law we’re
dead. For this case, Qenc = q for any radius surface and the electric field is

~E(~r) =
Qenc

4πε0r2
r̂ =

q

4πε0r2
r̂ =

kq

r2
r̂

where I have used k = 1/4πε0. Therefore, Coulomb’s law and Gauss’ law are equivalent.

Example 11.3 Spherical Charge Distribution with Imbedded Volume Charge
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Problem: A spherical system of charge is shown
to the right. The system is composed of a central
point charge with charge +2Q. The point charge
is imbedded in the center of a spherical volume of
charge with volume charge density ρ and radius a.
Surrounding the volume charge is a thin spherical
shell of charge with radius b. The shell has surface
charge density σ. For each region clearly state the
charge enclosed by the Gaussian surface.

(a)Calculate the electric field in region I.

(b)Calculate the electric field in region II.

(c)Calculate the electric field in region
III.

(d)If the total charge on the shell were
−2Q and the total charge on the vol-
ume charge is +Q not including the
charge of the point charge, draw the
electric field everywhere using 4 lines
per Q.

(e)To convert the general form of Gauss’
law to one useful in this symmetry, the
substitution n̂ ⇒ r̂ is made in

∫

S
( ~E ·

n̂)dA. Why can this be done?

 a

 b

 I

 II

 III

 Air

 Air

 volume
 charge

 +2Q

Solution to Part (a)

Gauss’ law states that the electric flux out of a closed surface is related to the charge enclosed in that surface by

φe =
Qenc

ε0

The Gaussian surface is drawn below. For spherical symmetry, since ~E = E(r)r̂, this can be converted to

φe = 4πr2E(r) =
Qenc

ε0

where r is the radius of the Gaussian surface. Solving for the field gives

~E =
Qenc

4πr2ε0
r̂

For a Gaussian surface with radius r < a so that the outer edge of the surface lies in region I, the surface encloses
the point charge and part of the volume charge: The charge enclosed in the surface is therefore

Qenc = +2Q +
4

3
πr3ρ

therefore the electric field in region I is

~EI =
Qtotal

4πε0r2
r̂ =

2Q + 4
3πr3ρ

4πr2ε0
r̂

Solution to Part (b)
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An example of a Gaussian surface in region II is drawn below. For a Gaussian surface with radius a < r < b in
region II the charge enclosed is the point charge and all of the volume charge therefore:

Qenc = +2Q +
4

3
πa3ρ

therefore the electric field in region II is

~EII =
Qtotal

4πε0r2
r̂ =

2Q + 4
3πa3ρ

4πr2ε0
r̂

Solution to Part (c)

A spherical Gaussian surface with radius b < r always encloses all the volume charge, the point charge, and the
shell of charge, therefore for region III:

Qenc = +2Q +
4

3
πa3ρ + 4πb2σ

therefore the electric field in region III is

~EIII =
Qtotal

4πε0r2
r̂ =

2Q + 4
3πa3ρ + 4πb2σ

4πr2ε0
r̂

Solution to Part (d)

Select 4 lines per Q. The total charge enclosed by a Gaussian
surface in region II is Qenc = +3Q = 12 lines outward. The
total charge enclosed in region III is Qenc = +Q = 4 lines
outward. In region I the charge enclosed changes from +3Q to
+2Q as the radius changes from a to 0 the number of lines change
from 12 to 8

 b

 I

 II

 III

 Air

 Air

 volume
 charge

 +2Q

 +
 + +

 +

 +

 +

 +

 +

 _

 _

 _

 _
 _

 _

 _

 _

 _

 _
 _

 _

 Gaussian Surface

Solution to Part (e)

The Gaussian surface is a sphere so its outward surface normal is the vector r̂.

11.4.2 Applying Gauss’ Law to Planar Symmetry

I find planar symmetry a little more tricky than spherical symmetry, first because one has to introduce an
arbitrary area and because there is the additional step of realizing the leftmost field is equal and opposite to the
rightmost field. The appropriate Gaussian surface for planar symmetry is a cylinder with ends of area A. Since A
is arbitrary, it must cancel from the calculation.

Use a Cylindrical Gaussian Surface: Use a cylinder with top and bottom parallel to
the plane and side perpendicular to the plane.
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Introduce an Arbitrary Area: Let the area of the top and the bottom of the cylinder
be A. This should cancel out of the final calculation.

Gauss’ law applied to the cylindrical surface becomes ErightA − EleftA = Qenc/ε0. If you try to apply this
blindly, you will find you are one equation short. You need the following interesting application of symmetry to
actually do a planar problem.

Outer Fields are Equal and Opposite in a Planar System: The electric field for a
planar system does not fall off with distance, therefore the magnitude of the field to
the far right is always equal and in opposite direction to the field to the far left.

Eleftmost = −Erightmost

Example 11.4 Two Infinite Parallel Planes of Charge
Problem: Two charged infinite parallel planes are spaced along the x-axis, the left plane with charge −3σ and
the right plane with charge σ. What is the electric field in all regions of this system?

Solution

(a) Draw a good diagram: Use Gauss’ Law Version 0 to
draw the electric field of the system. Select 4 lines per σA.
A Gaussian surface that encloses the entire system encloses
Q = −3σA + σA = −2σA = 8 lines entering from infinity.
By symmetry, four enter from the right and four from the
left. Now apply Gauss’ law to left plane only, a Gaussian
surface that encloses only the left plane encloses a charge of
−3σA = 12 lines entering the Gaussian surface. Four lines
already enter from the left, so eight lines must enter from the
right. Draw + charges where lines begin, − charges where
lines end.

I II III

 _
 _

 _

 _

 _
 _

 _ _
 _

 _

 _
 _

 +

 +

 +

 +

nl

nr

nsides

x

−3σ σ

(b) Select and Draw the Gaussian Surface: For planes, the appropriate Gaussian surface is a cylinder whose
left and right faces are parallel to the planes. Let the cylinder have end area A.
(c) Select the Appropriate Form of Gauss’ Law for Planar Symmetry: For a planar system, the fields have

the form ~EI = EI x̂, ~EII = EII x̂, and ~EIII = EIII x̂. The appropriate form of Gauss’ law is

−ElA + ErA =
Qenclosed

ε0

or

Er − El =
Qenclosed

Aε0

where Er is the field at the right end of the Gaussian surface and El is the field at the left end of the Gaussian
surface.
(d) Compute the Outer Fields: The electric field for infinite planes does not change with distance, therefore
the electric field at the very left of the system is equal and opposite to the electric field at the very right of the
system.

EI = −EIII

Apply our general form for Gauss’ Law of parallel planes to a Gaussian surface with one end in Region I and one
end in Region III as drawn above,

Er − El = EIII − EI =
Qenclosed

Aε0
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The total charge inside our Gaussian surface is (−3σ + σ)A = −2σA = Qenclosed

EIII − EI =
−2σA

ε0A
=

−2σ

ε0

Using EI = −EIII gives,

2EIII =
−2σ

ε0

~EIII =
−σ

ε0
x̂

~EI = − ~EIII =
σ

ε0
x̂

(e) Compute the Field in Region II: Work from left to
right. Now, use a Gaussian surface that only encloses the left
plane. Apply the general formula for Gauss’ Law with planar
symmetry,

Er − El = EII − EI =
Qenclosed

Aε0

The total charge inside the Gaussian surface is Qenclosed =
−3σA.

EII − EI =
−3σA

Aε0
=

−3σ

ε0

EII =
−3σ

ε0
+ EI =

−3σ

ε0
+

σ

ε0
=

−2σ

ε0

~EII =
−2σ

ε0
x̂

Check the fields have the same magnitude and direction as
the field map.

I II III

 _  _

 _  _

 _ _

 _ _

 _ _

 _ _

 +

 +

 +

 +

−3σ σ

nl
nr

x

11.4.3 Applying Gauss’ Law to Cylindrical Systems

The appropriate Gaussian surface for a system with cylindrical symmetry is a cylindrical surface of length L
and radius r co-axial with the system. The area of such a surface is 2πrL and Gauss’ law applied to the surface
is φe = 2πrLE(r) = Qenc/ε0.

Example 11.5 Electric Field of Cylindrical Tube of Charge
Problem: An infinitely long tube of charge has uniform volume charge density ρ and radius a. Calculate the
field everywhere.

Solution
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(a) Draw the System: Field lines begin at various places within
the volume charge and point radially outward.

 I

 II

 a

 r

(b) Select Appropriate form of Gauss’ Law and a Gaussian Surface: The appropriate Gaussian surface for

a cylindrical system is a cylinder of length L and radius r. The electric field is radial and has the form ~E = E(r)r̂
where now ~r = (x, y, 0) if the axis of the system is the z axis. For this surface, Gauss’ law can be reduced to
2πrLE(r) = Qenc/ε0 or writing the field as a vector

~E =
Qenc

2πε0rL
r̂

(c) Calculate the Field in Region I: A Gaussian surface in region I encloses part of the volume charge. The
charge enclosed by a Gaussian surface with radius r < a is the volume of the surface, the area of the end πr2

multiplied by L, time the charge density ρ,
Qenc = πr2Lρ

and therefore the electric field in region I is

~EI =
Qenc

2πε0rL
r̂ =

πr2Lρ

2πε0rL
r̂ =

rρ

2ε0
r̂

(d) Calculate the Field in Region II : A Gaussian surface in region II encloses all of the volume charge. The
charge enclosed by a Gaussian surface with radius r > a is

Qenc = πa2Lρ

and therefore the electric field in region II is

~EII =
Qenc

2πε0rL
r̂ =

πa2Lρ

2πε0rL
r̂ =

a2ρ

2ε0r
r̂

Note in both regions the arbitrary length L cancelled.
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Chapter 12

Final Topics Test 1

This chapter covers the final few topics for systems where the location of all charge is known. This is in
contrast to next chapter where we have to figure out the location of the charge.

12.1 Long Range Fields

We are beginning to be able to build up some very complicated charge distributions. While we were drawing
field maps we used the fact that far from a system of net charge the field was radial and far from a system with
zero net charge but non-zero dipole moment, the field had a characteristic dipole shape. I would like to return to
this result quantitatively.

Field Far from a System of Net Charge: The electric field at a point far from a
system with net non-zero charge (compared to the extent of the system), is the field of
a point charge at the center of the system with charge, Qtotal, the total charge of the
system.

Long Range Field of a Dipole System: If a system has zero net charge, but non-zero
dipole moment ~p, the electric field far from the charge will be the electric field of a
simple dipole with dipole moment ~p.

Example 12.1 Electric Field Far from a Complicated System of Charge
Problem: Consider the system to the right. The two spherical
volume charges have uniform volume charge density ρ and radii
a. The disk has uniform surface charge density σ and radius b.
All charge densities are positive. Calculate the electric field at all
points r ≫ a and r ≫ b.

 Disk

 a

 b

Solution
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Since all charge densities are positive, the system has a net charge and therefore the field far from the system is
that of a point charge with the total charge of the system, Qtotal. The total charge is the sum of the total charge
of both shells and the volume charge

Qtotal =
4

3
πρa3 + πb2σ +

4

3
πρa3

Therefore, the electric field far from the system is

~E =
kQtotal

r2
r̂ = k

4
3πρa3 + πb2σ + 4

3πρa3

r2
r̂

12.2 Gauss’ Law Inside and Outside All Charge

One of the most powerful applications of Gauss’ Law is not the calculation of the detailed electric field of
a complicated system of charge, but the calculation of the electric field either completely outside or completely
inside a system of charge. The following rules allow immediate calculation of the electric field for the innermost
and outermost regions of highly symmetric charge distributions.

Electric Field Outside All Charge - Spherical Symmetry: The exact field of a
spherically symmetric charge distribution at a radius r outside of all charge is the field
of a point charge with charge equal to the total charge, QT , of the distribution

~Eoutside =
QT

4πε0r2
r̂ =

kQT

r2
r̂

Electric Field inside all Charge - Spherical Symmetry: For a spherically symmetric
system of charge, if we are inside all charge then the electric field is zero.

Electric Field Inside All Charge - Cylindrical Geometry: Inside all charge for a
cylindrically symmetric charge distribution, the electric field is zero.

Electric Field Outside All Charge - Cylindrical Symmetry: The electric field outside
all charge for a cylindrically symmetric distribution of charge is

~E(r) =
λ

2πε0r
r̂

where λ = QT /L with QT the total charge of a length L of the system.

Planar systems are somewhat different because the concept of inside and outside does not make much sense.
There is no center for a planar system. For planar systems, we can consider the electric field to the far right and
far left of the system.

Electric Field Outside All Charge - Planar Symmetry: For a system with planar
symmetry, far from all charge, the electric field is the same as a single plane with charge
density being the total charge density of the system

~E =
σT

2ε0
outward.

The total charge density can be computed by taking a cylindrical Gaussian surface with
end area A and finding the total charge in it, QT , σT = QT /A.
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Chapter 13

Conductors and Dielectrics

13.1 Response of Materials

13.1.1 The Electric Response of Conductors

We have been qualitatively drawing the response of conductors and dielectrics to external electric fields since
the second day of the course, where you learned how the golf tube attracted the soda can and the plastic bottle. If
you will recall, the attraction was explained by reasoning that the electric force of the golf tube induced a surface
charge on each object, then the forces on these charge densities from the external object caused the motion. Our
analysis of conductors and dielectrics will follow this pattern: (1) Find the field of the external object, (2) Find
the induced surface charges, and (3) Add the field of the induced charges to the field of the static charges to get
the total field. For static electric fields, conductors and dielectrics are just another source of charge. Once this
charge is accounted for, the material can be forgotten. For electromagnetism, it is always useful to remember:

UPII Mantra: There is only charge and field.

For twelve chapters, we have been considering systems of charge that are distributed through space and
mysteriously stay put even though since like charges repel they should blow apart. In lab, not surprisingly, we’ve
had to place charge on conductors and dielectrics to work with it. We know when conductors or dielectrics are
placed in an electric field, that surface charge appears on the surface, since we’ve been drawing pictures like the
one below since the first week of class.

tube

neutral 

plastic

bottleFtube, + Ftube, −

Fnet

Some of our observations about the qualitative behavior of conductors will allow us to deduce the key math-
ematical relations governing conductors in an electric field. Recall the following:

• Charge can move in a conductor.

• The net electric force inside a conductor is zero. We argued that charge separation would occur until
the total force on the electrons (and protons) inside a conductor is zero. The total force is the sum of the
external force and the electric force of the separated charge.

• Charge will move in response to an electric force. If there is a net electric force on charges in a
conductor the charges will accelerate and move.

From these observations, we can deduce these laws for the electric field inside a conductor in electrostatic
equilibrium:
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Electric Field Inside the Conductor is Zero: The mobile charge in a conductor
rearranges itself to produce zero electric field, ~E = 0, in the interior of the conductor.
If there was a net field, charge would move.

It is somewhat unbelievable that a conductor can accomplish this at all points no matter what. I have
always found the following the most convincing argument for the need for zero electric field in a conductor.
Suppose the field was not zero. Since there is mobile charge in a conductor, there would be a flow of charge, an
electric current. Electric currents in conductors cause heating and therefore a loss of energy. This cannot happen
indefinitely. Eventually, the conductor must reach an equilibrium where the current is zero and therefore the field
is zero.
The same reasoning can be used to show the electric field must
be perpendicular to the surface of the conductor. Suppose the
electric field, ~E0, was not normal to the surface at some point
as shown to the right. The field could be decomposed into a
field perpendicular to the surface ~E⊥ and a field parallel to the
surface ~Epar. The component of the field parallel to the surface
will cause currents to flow along the surface. The surface charge
will rearrange until these currents stop.

 conductor

 E0

 Epar

 Eperp

Electric Field is Normal to a Conductor Surface: At the surface of the conductor
~E is perpendicular to the surface. If ~E were not perpendicular(normal) to the surface,
there would be a component of the electric field along the surface and the surface charge
would move along the surface.

Definition of Induced Charge: An applied electric field is reduced to zero in a con-
ductor by the field of a surface charge that forms on the conductor. This surface charge
in called the induced charge.

The requirement that the field is zero in a conductor places restrictions on the location of net charge on the
conductor.

All net charge on a conductor is at its surface: If net charge existed inside a
conductor, there would be a region around the net charge (by Gauss’ Law) where there
was a non-zero electric field. This would cause charge to flow. Charge would continue
to flow until the field was zero and the region of net charge was removed.

All Charge is at the Outer
Surface of a Conductor:
If a conductor has a cavity
that does not contain a fixed
charge, then there is no sur-
face charge density on conduc-
tor at the cavity. Therefore
all the surface charge density
is on the outer surface of a
conductor. This is not true
if there is a net charge in the
cavity. One can show this by
placing a Gaussian surface in
the conductor around the cav-
ity. Since the electric field on
the surface is zero, the surface
contains zero net charge.

 conductor

 cavity

 Gaussian surface
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Example 13.1 Why is Electric Field Zero in a Conductor?
Problem: Explain why the electric field in a conductor is zero.

Solution

The electric field is just the electric force that a positive charge would feel. In Course Guide 2 Electric Force I, we
asked the question, “Why doesn’t all the charge separate out of a conductor?” We reached the conclusion that
each charge that separates partially cancels the electric force that the next charge would feel. The same reasoning
applies to the electric field in a conductor. Initially, the electric field causes electrons to move to one surface,
leaving a positive region on the other surface. The electric field for these separated charges partially cancels the
external electric field. More charge separates until the electric field is zero inside the conductor. If the field were
not zero, more charge would be pushed to the surface.

Alternately, if the electric field is not zero, charge must flow until the electric field becomes zero.

13.1.2 Basic Properties of Dielectrics

The conductor accomplished the reduction of electric field in its interior by generating an induced surface
charge. The dielectric reduces the electric field in its interior because a surface charge results from the stretching
of the atoms. This surface charge is called a bound charge. The surface charge sets up an electric field that
partially, but not completely, cancels the applied field. The factor by which the electric field is reduced is called
the dielectric constant and denoted by the symbol κ.

Response of Dielectric to Applied Electric Field: In each small volume of its interior,
a dielectric reduces the field that would have existed if the volume did not contain
dielectric, ~E0, by a factor of the dielectric constant, κ, to a field in the dielectric of
~E0/κ. The dielectric constant is a property of the material.

Dielectric Constant: The amount a dielectric can be polarized is characterized by the
dielectric constant, κ. Dielectric constants are always greater than or equal to 1. The
dielectric constant of air may be taken to be 1. The dielectric constant of empty space
is by definition 1. The Greek symbol κ is pronounced “kappa”.

This is a very difficult behavior to deal with in practice because the field that would have existed in the dielectric
depends not only the applied field, but also the field of the bound surface charges produced by polarization of the
dielectric.

Bound Surface Charge: When a dielectric (also called an insulator) is placed in an
electric field, the charge in the atoms or molecules which make up the material separates
slightly, but there is no macroscopic charge movement. The slight separation of the
atomic charges produces a bound charge density at the surface of the dielectric. The
location of the bound charge can be found by the drawing the field map and finding
where lines begin and end on the dielectric.

Dielectric Constants

κ
space 1
air 1.00059

Plexiglas 3.40
Glass 5-10
PVC 3.18
Water 80

Electric Field Bends Closer to Normal at Dielectric Surface: At the surface of
a dielectric in an applied field, the electric field bends closer to perpendicular to the
surface than the field without the dielectric present.
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13.1.3 Dielectric Breakdown

A dielectric produces a surface charge by deforming the atoms of the dielectric. Like anything else, an atom
cannot be stretched indefinitely. At high enough fields, the atom comes apart losing one or more of its outer
electrons. Both the electrons and the charged atom (ion), become mobile charge in the material. The dielectric
breaks down. For air we get a spark. Every material breaks down at a different maximum electric field.

Dielectric Breakdown: Dielectrics stay insulating only for electric fields below a certain
magnitude, otherwise you obtain a spark and a current flows. The magnitude of the
electric field where the dielectric begins to spark is the dielectric breakdown voltage.
For dry air, dielectric breakdown happens at | ~E| = 3 × 106 N/C.

13.2 Field Maps of Point Charges

To add a conductor or dielectric to an electric field map or to an electric field problem, we first solve the
problem for the static net charge, then fix up the field map by correcting for the conductor or dielectric.

Fixing the Conductors: First erase any field lines crossing a conductor because the
field inside a conductor is zero, then bend the field lines that intersect the conductor so
they are normal to the conductor surface.

Fixing the Dielectrics: First thin field lines crossing the dielectric by a factor of the
dielectric constant κ, so if κ = 2 erase half the lines, and if κ = 3 erase 2

3 of the lines,
then bend the field lines which intersect the dielectric so they are closer to the normal
of the dielectric surface.

Draw Induced and Bound Charge: Draw + charge where field lines begin and −
charge where field lines end.

Example 13.2 Drawing the Electric Field Map with Dielectrics Present
Problem: Draw the electric field map of one point charge, +Q, and an uncharged dielectric sphere with dielectric
constant κ = 3.

Solution

Strategy: Draw the fixed charge map, then thin the lines in the dielectric by κ and bend them toward the
surface normal.

(a) Draw the field of the fixed charges: Draw the field of
the fixed charge. Since the dielectric is uncharged, just draw
the physical location of the dielectric.

+Q
Dielectric
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(b) Thin Field Lines in the Dielectric: The dielectric will thin the field lines which cross it in proportion to
its dielectric constant. So if κ = 3, the field lines are a third as dense. Erase an appropriate number of field lines
within the dielectric. There were 3 field lines inside the dielectric, and 3/κ = 1, so erase 2 field lines.

(c) Bend Lines At the Dielectric and Label Bound
Charge: Field lines bend toward the normal at the sur-
face of a dielectric, but unlike a conductor they do not bend
all the way to normal. The field lines which begin and end on
the dielectric surface must begin and end on charge. The law
that the field must be radial at infinity still applies. The net
field lines exiting the surface must be correct for the charge;
so if the dielectric is uncharged, the same number of lines
that go in must come out. Place + charge where lines begin
and − where lines end. The same number of lines come out
as go in, which is correct for an un-charged object.

+Q

Dielectric
-

-

+

+

(d) Bend Lines to Fill Gaps: We have only touched field
lines which cross the dielectric; but, this leaves gaps where
we have a straight line next to a strongly bent line. Bend
the straight lines some to fill in the gap. This may make
more lines intersect the dielectric. The goal is once again to
have a distribution of evenly spaced field lines far from the
source. I bent the field lines next to those which intersect the
dielectric. No further lines intersected the dielectric.

+Q

Dielectric
-

-

+

+

Bend Line To 
Fill Gaps

Example 13.3 Drawing the Electric Field Map with Conductors Present
Problem: Draw the electric field map of one point charge, +Q, and an uncharged conducting sphere.

Solution
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(a) Draw the field of the fixed charges: Draw the field
of the fixed charge. Sketch the location of the conductor and
erase the lines inside, because ~E = 0 in a conductor.

+Q Conductor

(b) Bend Lines Normal To Conductor and Label Charge:
The picture above doesn’t satisfy the condition that field lines
must be normal at the surface of a conductor. To fix this,
bend the lines so that they are perpendicular to the conductor
surface. The law that the field must be radial at ∞ still
applies. Label the induced charge. Field lines begin on +
charge and end on − charge.

+Q

-

-

+

+

+
-

Conductor

(c) Conserve the Induced Charge: The net number of lines leaving the conductor must be correct for its
charge. So if the conductor is uncharged, the lines entering must equal the lines leaving. Counting field lines will
show that no net lines are leaving, so the conductor is uncharged.
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(d) Bend Lines to Fill Gaps: We have only touched field
lines which cross the conductor; but this leaves gaps where
we have a straight line next to a strongly bent line. Bend the
straight lines some to fill in the gap. This may make more
lines intersect the conductor. The goal is once again to have
a distribution of evenly spaced field lines far from the source.
To fill in gaps in the field, four lines were bent causing two
more lines to intersect with the conductor.

+Q Conductor

-

-
-

+

+

+

+-

-

+

Bend To
Fill Gaps

13.3 Charge Density at a Surface

Conductors and dielectrics affect the electric field because they
produce surface charge densities. We need a method to calculate
these surface charge densities, if we can figure out the field. This
can be done by using a Gaussian surface with sides immediately
on either side of the surface charge. If the area of the cylinder is
small, the electric field does not change much over the faces of
the cylinder, and may be approximated as constant. If the height
of the cylinder is short enough, there is no flux out the sides.
Such a cylinder will be called a Gaussian pillbox. Since the height
of the cylinder is small, the ends of the cylinder have the same
normals as the surface.

 charged

surface electric field 1

electric field 2

n1

n2

We can write Gauss’ law for the cylinder as φ1 + φ2 = Qenc

ε0
, where φ1 is the electric flux out of the surface with

normal n̂1 and φ2 is the flux out of surface with normal n̂2. The charge enclosed in the pillbox is the surface charge
density we are looking for, σ, multiplied by the area of the end A, Qenc = σA. Since the field is approximately
constant over the surface, φ1 = ~E1 · n̂1A and φ2 = ~E2 · n̂2A, where Ei is the field on either side of the surface.

φ1 + φ2 = ~E1 · n̂1A + ~E2 · n̂2A =
σA

ε0

or cancelling A and multiplying by ε0

ε0( ~E1 · n̂1 + ~E2 · n̂2) = σ

Surface Charge Density in Gaussian Pillbox: The surface charge density in Gaussian
pillbox with normals n̂1 and n̂2 is

ε0( ~E1 · n̂1 + ~E2 · n̂2) = σ

where ~E1 and ~E2 is the electric field on either side of the surface.

Example 13.4 Gauss’ Law at a Flat Surface
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Problem: In the region x < 0, the electric field is ~E− =

100N
C x̂ + 50N

C ŷ and in the region x > 0 the electric field is ~E+ =

180N
C x̂ + 50N

C ŷ. Calculate the surface charge density in the y-z
plane.

d

x

 E−  E+

n− n+

Solution

(a) Draw the Gaussian Surface: Use the Gaussian pillbox drawn above. Gauss’ law applied to the pillbox is

~E− · n̂−A + ~E+ · n̂+A =
σA

ε0

~E− · n̂− + ~E+ · n̂+ =
σ

ε0

(b) Work out the Dot Products: By observation, n̂− = −x̂ and n̂+ = x̂,

~E− · n̂− = ~E− · (−x̂) = −100
N

C

~E+ · n̂+ = ~E+ · (x̂) = 180
N

C

Apply Gauss’ law,

σ = ε0( ~E− · n̂− + ~E+ · n̂+) = (8.85 × 10−12 C2

Nm2
)(−100

N

C
+ 180

N

C
) = 7.1 × 10−10 C

m2

The expression above can be used at any surface. It can be simplified quite a bit if the surface and the field
have planar symmetry.

Surface Charge Density at
Planar Surface: If the field is
perpendicular to the surface as
shown to the right, then the
surface charge density at the
surface is given by

ε0(E2 − E1) = σ

where E is positive if it points
to the right.

 E1  E2
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13.4 Planar Conductors and Dielectrics

13.4.1 Response of a Plane Conductor

The methods of the previous section can be used to calculate
the induced surface charge density on a planar conductor in a
uniform external electric field. The conductor reduces the electric
field in its interior while not disturbing the electric field outside
the conductor, as drawn to the right. Using the Gaussian pillbox
drawn, the surface charge density of the left surface is −σc =
ε0(Eright−Eleft) = ε0(0−E0), so σc = ε0E0. From the drawing,
the charge on the right surface is positive and the charge on the
left surface is negative.

 +

 +

 +

 +

 +

 _

 _

 _

 _

 _

 Air  Air
 conductor

+σc−σc
 E  E0

 E0 =0

Surface Charge Density at Conductor Surface: The surface charge density at a
conductor’s surface is

σ = ±ε0E

where E is the field immediately outside the surface. E is positive if field lines leave
the surface.

13.4.2 Response of a Plane Dielectric

A planar dielectric is sufficiently symmetric that the electric field in its interior can be quantitatively predicted.

Decrease in Electric Field : The electric field is reduced inside the dielectric by the
field of the bound charge. The dielectric constant, κ, tells how much the electric field
is reduced inside the dielectric. So in symmetric geometries if the electric field would
have been ~E0 with no dielectric, then the electric field becomes ~Eκ = ~E0/κ inside the
dielectric. The figure below is drawn assuming κ = 2 so there are half the field lines in
the dielectric.

Dielectric

-

-

-

+

+

+

 I  II  III

 E0 Eκ E0
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The magnitude of the bound surface charge density can be found by applying Gauss’ law to a Gaussian pillbox
shown surrounding the left surface of the dielectric. Gauss’ law yields

−σb = ε0(EII − EI) = ε0(
E0

κ
− E0) = ε0E0(

1

κ
− 1)

σb = ε0E0(1 − 1

κ
)

Magnitude of Bound Charge at Dielectric Surface: The bound charge density at
the surface of a planar dielectric with dielectric constant κ is

σb = ±ε0E0(1 − 1

κ
)

Polarization Electric Field : The electric field in the dielectric is decreased because
the bound charge creates an electric field ~Eb. The electric field in the dielectric, ~Eκ, is
the vector sum of the field in free space, ~E0, and ~Eb,

~Eκ = ~E0 + ~Eb.

Since these fields ~E0 and ~Eb are always in opposite directions, the magnitude of ~Eκ is
always the difference of their magnitudes, and in the direction of the free space field.
For any case we consider in this class ~E0 is always larger.

Polarization Field of Dielectric

-

-

-

+

+

+

 Eb

Example 13.5 Computing Dielectric Properties
Problem: A pane of glass (dielectric constant κ = 5.6) is placed in an electric field with magnitude | ~E0| = 10000
N/C directed normal to its surface.

(a)Compute the electric field inside the dielectric.

(b)Compute the electric field of the bound charge.

(c)Compute the bound charge density at the surface of the glass.

(d)Explain where in the world this charge comes from.

Solution to Part(a)
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The dielectric reduces the field by a factor of κ, so the electric
field in the dielectric is

| ~Eκ| =
| ~E0|
κ

= 1785.7
N

C

in the same direction as ~E0.

Dielectric

E0 E0Ekappa

-

-

-

+

+

+

+

+

-

-

Solution to Part(b)

The bound charge produces an electric field which partially cancels ~E0 to produce ~Eκ. This is why the electric
field is reduced in the dielectric. Therefore, | ~Eb| = | ~E0| − | ~Eκ| = 10000N

C − 1785.7N
C = 8214.3N

C . The bound

field points in the opposite direction to ~E0.

Solution to Part(c)

Using a Gaussian cylinder with end area A at the right surface of the dielectric, we find

φe = AEright − AEleft =
Qenclosed

ε0

where Eright = E0 is the magnitude and sign of the field on the right surface and Eleft = Eκ is the magnitude
and sign of the electric field on the left surface. Let the dielectric slab lie in the y − z plane and let +x be to the
right.

ErightA − EleftA =
Qenclosed

ε0
=

σbA

ε0

σb = ε0(Eright − Eleft) = ε0(E0 −
E0

κ
) = ε0E0(1 − 1

κ
)

Cancelling A yields, Therefore, the bound charge density is

σb = ǫ0E0

(

1 − 1

κ

)

= (8.85 × 10−12 C2

Nm2
)(10000

N

C
)

(

1 − 1

5.6

)

= 72.7
nC

m2

Solution to Part(d)

The individual atoms or molecules polarize throughout the material, mostly cancelling in the middle, but leaving
a little “extra” charge on each surface.

13.5 Superposition

The response of both a planar conductor and a planar dielectric to an external electric field was to generate
equal and opposite planes of surface charge. The field is zero in a planar conductor because the field of the
induced surface charge exactly cancels. To use this observation, we will need to understand the field of equal and
opposite planar charges.
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Consider the two fixed planes of charge shown below. The left plane has surface charge density +σ and the
right plane surface change density −σ. If a cylindrical Gaussian surface with end area A encloses all the charge
of the system, the charge enclosed is Qenc = (σ + (−σ))A = 0. Therefore the field in region I and III is zero.
A Gaussian surface that encloses only the left plane encloses a charge of Qenc = σA. Applying Gauss’ law to this
surface yields,

EIIA − EIA =
Qenc

ε0
=

σA

ε0

Since EI = 0, this can be solved to yield EII = σ/ε0.

Electric Field of Equal and
Opposite Charge Densities:
The electric field of infinite
planes of charge with equal
and opposite charge densities,
+σ and −σ is

~EII =
σ

ε0
x̂

between the planes and

~EI = ~EIII = 0

outside of the planes.

+σ −σ

I II III

 +

 +

 +

 +

 +

 _

 _

 _

 _

 _

 Air  Air  Air

The electric fields of the infinite parallel planes can be added to an external field. Since the electric field
outside of the planes is zero, the charges on the planes do not change the external field except in the region
between the planes. Therefore, to calculate the electric field of a planar conductor we add the applied field to the
field of the equal and opposite surface charges.

 +

 +

 +

 +

 +

 _

 _

 _

 _

 _

  External Field

 added to

 Field of Induced Charge

equals

 +

 +

 +

 +

 +

 _

 _

 _

 _

 _

 Field of Conductor
−σc −σc+σc +σc

Example 13.6 Charge Density Required For Zero Field Between Planes
Problem: An external charge density (not drawn in the problem) produces a uniform electric field ~E0 = E0x̂
where E0 > 0. Two infinite parallel planes with equal and opposite charge densities |σ| are placed in the field as
shown to the right. Calculate σleft and σright such that the electric field between the planes is zero.

Solution
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(a) Draw the Field Map: We are given that the applied field is
uniform and that the equal and opposite parallel planes of charge
create a field that cancels the external field producing zero field
between the planes. Therefore, to draw the field map we draw a
uniform field outside the planes and zero field between the planes,
as shown above. Draw + charges where lines begin and − charges
where lines end.

I II III

 +

 +

 +

 +

 +

 _

 _

 _

 _

 _

 Air  Air  Air

 E0  E0
σleft σright

(b) Use the Field Map to Deduce the Charge Densities: Observing the field map, we see that the left
plane must have a negative surface charge density σleft < 0 and the right plane a positive surface charge density
σright > 0. The planes are equal and opposite so σleft = −σright.

(c) Reason About Field Produced by the Planes: The applied field is ~E0 = E0x̂ and it points in the positive
x̂ direction. The total electric field between the planes is zero, therefore the electric field of the planes in the
region between the planes, ~Eplanes,II , must satisfy

~E0 + ~Eplanes,II = 0,

therefore the electric field between the planes must point in the negative x̂ direction. Let ~EII,planes = EII,planesx̂.
From this we conclude

EII,planes = −E0

(d) Use the Field of Parallel Planes: The magnitude of the electric field between TWO infinite parallel planes
of charge is

|Eplanes,II | =

∣

∣

∣

∣

σright

ε0

∣

∣

∣

∣

=

∣

∣

∣

∣

σleft

ε0

∣

∣

∣

∣

Therefore,
σright = −σleft = ε0E0

I used the analysis of the signs of the charge densities to correctly set the signs.
(e) Check Against Our Formula for Surface Charge Density: In the previous section, we derived a formula
for surface charge density at a plane surface

σleft = ε0(EII − EI) = ε0(0 − E0) = ε0E0

so viewing the problems as a superposition of plane charges is consistent with using a Gaussian pillbox.
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We can
do the
same
analysis
for a
dielectric
slab.

a b

 +

 +

 +

 _

 _

 _

  External Field

 added to

 Field of Bound Charge

equals

a b

 +

 +

 +

 _

 _

 _

 Field of Dielectric

Example 13.7 Charge Density Required for Reduced Field between Parallel Planes
Problem: An external charge density (not drawn in the problem) produces a uniform electric field ~E0 = E0x̂
where E0 > 0. Two infinite parallel planes with equal and opposite charge densities |σ| are placed in the field.
Calculate σleft and σright such that the electric field between the planes is reduced by a factor of κ = 2.

Solution

(a) Draw the Field Map: We are given that the applied field is
uniform and that the equal and opposite parallel planes of charge
create a field that reduces the external field by a factor of 2 be-
tween the planes. Therefore, to draw the field map we draw a
uniform field outside the planes and a field with half the number
of lines between the planes, as shown above. Draw + charges
where lines begin and − charges where lines end.

I II III

 +

 +

 +

 _

 _

 _

 Air  Air  Air

σleft σright
 E0 E0

 E = 
 

 2

 E0

(b) Deduce the Sign of the Charge on Each Plane: Observing the field map, we see that the left plane must
have a negative surface charge density σleft < 0 and the right plane a positive surface charge density σright > 0.
The planes are equal and opposite so σleft = −σright.

(c) Reason About Field Produced by the Planes: The applied field is ~E0 = E0x̂ and it points in the positive

x̂ direction. The total electric field between the planes is ~E0/κ = ~E0/2, therefore the electric field between the

planes, ~Eplanes,II , must satisfy

~E0 + ~Eplanes,II =
~E0

κ
.

The electric field of the planes, between the planes, must point in the negative x̂ direction. Let ~EII,planes =
EII,planesx̂.

E0 + Eplanes,II =
E0

κ
From this we conclude

EII,planes = −E0 +
E0

κ
= −E0

(

1 − 1

κ

)
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.
(d) Use the Field of Parallel Planes: The magnitude of the electric field between TWO infinite parallel planes
of charge is

|Eplanes,II | =

∣

∣

∣

∣

σright

ε0

∣

∣

∣

∣

=

∣

∣

∣

∣

σleft

ε0

∣

∣

∣

∣

|Eplanes,II | = E0

(

1 − 1

κ

)

=
σright

ε0
= −σleft

ε0

Therefore,

σright = −σleft = ε0E0

(

1 − 1

κ

)

or substituting κ = 2,

σright = −σleft =
ε0E0

2

(e) Check Against Our Formula for Surface Charge Density: In the previous section, we derived a formula
for surface charge density at a plane surface

σleft = ε0(EII − EI) = ε0(
E0

κ
− E0) = −ε0E0

(

1 − 1

κ

)

so viewing the problems as a superposition of plane charges is consistent with using a Gaussian pillbox.
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Chapter 14

High Symmetry Systems II

14.1 Field Maps

14.1.1 Adding a Conductor to a Symmetric Field Map

The fact we don’t know where all the charge is screws everything up. The only systems where we can actually
calculate the field with conductors and dielectrics are the high symmetry systems where we can use Gauss’ as a
calculation tool. We played with planar systems some in Course Guide 13 and found that while the field in the
conductor and dielectric is different than the applied field, the applied field is unchanged outside of the material.
This observation can be generalized to the other high symmetry systems.

Field Unchanged Outside of High Symmetry Conductor and Dielectric: If an
uncharged conductor or dielectric with the same symmetry is placed in the field of a
system of fixed charge with planar, cylindrical, or spherical symmetry, then the field is
unchanged outside the conductor or dielectric. The field in the conductor is naturally
zero and the field in the dielectric is ~E0/κ where ~E0 is the field of the fixed charge only.

The electric field in a conductor is zero. To add an uncharged conductor to a field map of a system with
spherical, planar, or cylindrical symmetry, erase the lines in the conductor and draw + charges where lines end
and − charges where lines begin. To add a charged conductor to a field map, redraw from scratch using Gauss’
Law (Version 0). I am sorry that the stupid charge can move in a conductor, that just ruins everything.

Example 14.1 Add an Uncharged Conductor to a Parallel Plane Field Map
Problem: An infinite plane of charge with uniform charge density σ1 > 0 occupies the y − z plane through
the origin. A parallel plane through x = 1cm has charge density σ2 = −σ1/2. An uncharged conducting slab of
thickness 0.33cm is placed between the slabs. Draw the electric field.

Solution

Draw the field map ignoring the conductor based on a calculation of the field strength. Sketch in the location of
the conductor. Erase all field lines in the conductor. Draw charge where field lines begin and end.
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 Fixed Charge Only

I II
III

IV V

σ2 = − 
σ1 
 2

σ2 = − 
σ1 
 2

σl σl

Add the Conductor

14.1.2 Adding a Dielectric to a Symmetric Field Map

A dielectric reduces the magnitude of the electric field by a factor of κ. To add an uncharged dielectric to
a field map, simply erase enough lines to reduce the strength of the field by a factor of κ. If the dielectric is
charged, the charge will be on the surface and can be treated as another fixed charge density. The best way to
handle this situation is to imagine separating the net charge from the dielectric and treating the two separately.

Example 14.2 Add an Uncharged Dielectric to a Parallel Plane Field Map
Problem: An infinite plane of charge with uniform charge density σ1 occupies the y−z plane through the origin.
A parallel plane through x = 1cm has charge density σ2 = −σ1/2. An uncharged dielectric slab of thickness
0.33cm and dielectric constant κ = 3 is placed between the planes. Draw the electric field.

Solution

(a) Draw the Field Map Ignoring the Dielectric: This is the same fixed charge system as the previous
example. Draw the field map ignoring the dielectric.
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σ2 = − 
σ1 

 2
σ1

I II III IV V

(b) Fix the Field Map Interior to the Dielectric: Now add the dielectric and thin the lines by a factor of
κ = 3, so only three lines cross the dielectric. Draw charges where field lines begin and end.

Example 14.3 Drawing a Spherical Field Map with a Dielectric
Problem: If a thick dielectric shell has dielectric constant κ = 2.0 and surrounds a point charge of charge +Q,
draw the electric field map using 8 field lines per +Q.

Solution

The dielectric thins the field lines by a factor of κ = 2, so eliminate half the field lines in the dielectric. Since the
dielectric is uncharged, the same number of field lines must leave the dielectric as leave the central charge. Draw
+ charge where lines begin and − charge where lines end.

Dielectric

 _ 

 _  _ 

 _  +  + 

 +  + 
Dielectric

 The System

 Air

 Air

 Field of Fixed Charge

Q Q Q

14.2 Electric Field

Using the same kind of reasoning we used for drawing electric field maps, we can compute the electric field
and the induced and bound charge using Gauss’ Law. The addition of an uncharged conductor or dielectric to a
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highly symmetric system where Gauss’ Law is useful for computing the field proceeds in the same way for both
objects. We work the problem as we did in the static system and then correct the electric fields for the presence
of the object, setting the field to zero inside a conductor and dividing the field by κ inside an insulator. As the
Gaussian surface is moved from region to region, Gauss’ Law allows the calculation of the induced charges on the
conductors and the bound charges on the dielectrics.

Adding an Uncharged Conductor: To work a problem with an uncharged conductor,
work the problem without the conductor, then draw the conductor in, erasing the field
lines inside. The electric field inside the conductor is zero, the electric field outside the
conductor is unchanged. The induced surface charge can be computed at each surface
by applying Gauss’ Law and requiring the field to be zero in the conductor.

Adding an Uncharged Dielectric: To work a problem with an uncharged dielectric,
we work the problem without the dielectric, then draw the dielectric in. The electric
field inside the dielectric is ~E/κ, where ~E is the field we calculated with no dielectric
and κ is the dielectric constant. The electric field outside the dielectric is unchanged.
The bound surface charge can be computed at each surface by using Gauss’ Law, with
the requirement that it produces the correct dielectric field.

Example 14.4 Gauss’ Law with Conductors and Dielectric but no Surface Charge
Problem: A point charge with charge Q is surrounded by an uncharged dielectric shell with dielectric constant,
κ, and an uncharged conductor as shown below.

(a)Compute the electric field in region I.

(b)Compute the electric field in region II.

(c)Compute the electric field in region III.

(d)Compute the electric field in region IV .

(e)Compute the electric field in region V .

Air

Air

 Q

Conductor

Dielectric

I

II

III

IV
V

Solution to Part (a)

For a system of charge with spherical symmetry, Gauss’ Law can be simplified to

~E =
Qenclosed

4πε0r2
r̂.
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The only net charge in the system is the point charge, since neither the conductor nor the dielectric have net
charge. The electric field of the point charge, either using Gauss’ Law or Coulomb’s Law, is

~E =
Q

4πε0r2
r̂.

The conductor and dielectric only modify this field in their interior, so in regions I, III, and V, the total charge
enclosed is Q and the electric field is

~EI =
Q

4πε0r2
r̂.

Solution to Part (b)

The electric field in region II is zero, because we are in a conductor.

~EII = 0

Solution to Part (c)

The electric field in region III is outside of the conductor and dielectric and is unchanged from the point charge
field.

~EIII =
Q

4πε0r2
r̂

Solution to Part (d)

The electric field in region IV is the electric field in the region if no dielectric were present, divided by κ, the
dielectric constant. Therefore,

~EIV =
Q

4πε0κr2
r̂.

Solution to Part (e)

A Gaussian surface in region V is outside of all charge and encloses a total charge of Q, therefore the electric
field in region V is

~EV =
Q

4πε0r2
r̂.

The next step is to learn how to add a charged conductor to a highly symmetric system of charge. This
presents a big problem. In every other case, we have known where the net charge is. In this case, the net charge
can move from side to side in the conductor and we have to use Gauss’ law to figure out where it is. The first
example uses only conductors and the second example throws a dielectric into the mix.

Example 14.5 Charged Spherical Conductor
Problem: A spherical conductor with radius a has net charge Q. The conductor is surrounded by a thick
conducting shell with inner radius b and outer radius c which has total charge −Q/3. Compute the electric field
everywhere and all surface charge densities.

Solution

(a) Draw a Good Diagram: Let the inner conductor be conductor 1 and the outer shell be conductor 2. Select
6 lines per Q. The total charge in a spherical Gaussian surface in region II as drawn is Qenc = Q, so by Gauss’
Law version 0, 6 lines cross region II. Four lines cross region IV because the total charge enclosed by a Gaussian
surface in region IV is Qenc = Q − Q/3 = 2Q/3. Draw − charge where lines end and + charge where lines
begin.
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 Conductor 1

 Conductor 2

 I

 II

 III

 IV

 a
 b

 c

 +
 +

 +

 +
 +

 +

 _

 _

 _

 _

 _

 _
 Air

 Air

(b) Select Gauss’ Law Appropriate for Symmetry: For spherical symmetry, the electric flux out of a Gaussian
surface of radius r is 4πr2E(r) and by Gauss’ law

φe = 4πr2E(r) =
Qenc

ε0

where Qenc is the charge enclosed in a Gaussian surface of radius r.
(c) Compute the Electric Field in all Regions: The electric field in region I and region III is zero because
of the conductors.

~EI = ~EIII = 0

The total charge enclosed by a Gaussian surface in region II is Q, therefore the electric field in region II is

~EII =
Q

4πε0r2
r̂

The total charge enclosed by a Gaussian surface in region IV is Qenc = Q − Q/3 = 2Q/3. Apply Gauss’ Law

~EIV =
2Q/3

4πε0r2
r̂ =

Q

6πε0r2
r̂

(d) Compute the Surface Charge Density on Conductor 1: The net charge Q must be on the outer surface
of conductor 1. The surface charge density on the outer surface of the inner conductor is

σ1 =
Q

4πa2

(e) Compute the Surface Charge on the Inner Surface of
Conductor 2: Place a Gaussian surface in region III as shown
to the right. Since the electric field in this region is zero, the
Gaussian surface must enclose zero net charge. A Gaussian sur-
face in region III encloses the charge on the inner conductor and
the charge on the inner surface of the conducting shell, Q2,in.
Therefore, Q2,in + Q = 0 or Q2,in = −Q. Divide by the area of
the inner surface to get the charge density,

σ2,in =
−Q

4πb2
.

 Conductor 1

 Conductor 2

 I

 II

 III

 IV

 a
 b

 c

 +
 +

 +

 +
 +

 +

 _

 _

 _

 _

 _

 _
 Air

 Air
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(f) Compute the Surface Charge Density on the Outer Surface of Conductor 2: The total charge on
conductor 2 must be −Q/3 which must be the sum of the charge on the inner surface and the charge on the
outer surface,

−Q

3
= Q2,in + Q2,out = −Q + Q2,out

therefore

Q2,out =
2Q

3
The charge density on the outer surface of the conducting shell is

σ2,out =
Q2,out

4πc2
=

Q

6πc2

Example 14.6 Spherical Gauss’s Law with Conductor and Dielectric
Problem: A point charge with charge +Q is surrounded
by a charged conducting shell, with total charge −2Q, of
inner radius a and outer radius b. Outside of the shell is an
uncharged dielectric shell of inner radius b and outer radius
c, with dielectric constant κ = 3.

(a)What is the field in region I?

(b)What is the field in region II?

(c)What is the field in region III?

(d)What is the field in region IV?

(e)What is the charge on inner surface of the con-
ductor Qc,inner?

(f)What is the charge on the outer surface of the
conductor Qc,outer?

(g)What is the bound charge on the inner surface
of the dielectric Qd,inner?

(h)What is the bound charge on the outer surface
of the dielectric Qd,outer?

+Q

Conductor

Dielectric

Air

-2Q

Q I

II
III

IV

+Q

Conductor

Dielectric

Air

-2Q

Q I

II
III

IV

Gaussian Surface

 _
 _

 _

 _
 _

 _

 _

 _

 _

 _

 _

 _

 _

 _

 _

 _

Definitions

~Ei ≡ Electric field in Region i

~r ≡ Radius vector.

Q ≡ Central Charge

Qc,inner ≡ Total charge on inner surface of conductor

Qc,outer ≡ Total charge on outer surface of conductor

Qd,inner ≡ Total charge on inner surface of dielectric

Qd,outer ≡ Total charge on outer surface of dielectric

κ = 3 ≡ Dielectric Constant
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Strategy: Use result of Gauss’ Law for spherical symmetry in each region. Figure out bound charges from the
change in field across material boundaries.

Solution to Part (a)

(a) Draw a Good Diagram: All field lines are radial. I chose 8 lines going out for the central Q. All these lines
end on the conductor. If the dielectric was not present a Gaussian surface outside the conductor would contain a
total charge of −Q, so in region IV there are 8 lines going in. The dielectric thins the lines by a factor of κ, so
in the dielectric there are 8/3 ≈ 2 lines going in. Draw charge where lines begin and end.

(b) Compute ~EI : By Gauss’ Law, the electric field of a spherically symmetric charge distribution is

~E =
Qenclosed

4πε0r2
r̂

In region I, the total charge enclosed is Q, so

~EI =
Q

4πε0r2
r̂

Solution to Part (b)

Compute ~EII : In region II, we are inside
~EII = 0

Solution to Part (c)

Compute ~EIII : In region III, the electric field would be the same as region IV if no dielectric were present. The
dielectric thins the fixed charge field by a factor of κ, so

~EIII =
~EIV

κ
=

−Q

4πε0κr2
r̂

Solution to Part (d)

Compute ~EIV : In region IV, the total charge enclosed is −Q = Q − 2Q, so

~EIV =
−Q

4πε0r2
r̂

Solution to Part (e)

Compute Induced Charge on Conductor: Since the electric field is zero in the conductor a Gaussian surface
in the conductor encloses zero charge. The charge enclosed by a Gaussian surface in the conductor is the central
charge, Q, plus the induced charge on the inner surface of the conductor Qc,inner, so Q + Qc,inner = 0, or

Qc,inner = −Q

Solution to Part (f)

The total charge of the conductor is −2Q, which must be the sum of the inner and outer charge densities on the
conductor, so −2Q = Qc,inner + Qc,outer and solving

Qc,outer = −Q

Solution to Part (g)
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Compute Bound Charge on the Dielectric: The field in the dielectric is ~EIII =
~EIV

κ = −Q
4πε0κr2 r̂, but in the

dielectric this must be the field from the total charge enclosed which is Qenclosed = Q − 2Q + Qd,inner, which

by Gauss’ Law give a field of ~E = Qenclosed

4πε0r2 r̂. Comparing these two expressions we get,

Qenclosed = −Q

κ
= −Q

3
= Q − 2Q + Qd,inner.

Solving gives

Qd,inner =
2

3
Q

Solution to Part (h)

The dielectric is uncharged so Qd,inner + Qd,outer = 0, or

Qd,outer = −2

3
Q

The same methods can be applied to planar symmetry.

Example 14.7 Parallel Planes with Uncharged Dielectric and Conductor
Problem: A uncharged conducting slab and an uncharged dielectric slab with dielectric constant, κ, have
thickness 1cm and are spaced 1cm apart. Immediately between them is a sheet of charge with charge density, σ.

(a)Use Gauss’ Law to find the electric field everywhere.

(b)Compute any surface charge densities.

Solution to Part(a)

(a) Draw the field map: The electric field of an isolated
plane of charge points directly outward from the plane. The
plane charge is the only fixed charge in the system, so outside
of the conductor and dielectric the field is that of the plane.
Correct the field for the conductor and dielectric. Outside
of an uncharged conductor or dielectric in a high symmetry
system, the field is unchanged.

 +

 +

 +

 +

 +

 +

 Conductor  Dielectric

 I II  III  IV  V  VI

 x

 +

 +

 +

 +

 +

 +-

-

-

-

-

-

a b

σc,l σc,r σd,r
σd,l

(b) Compute the Field Outside the Conductor and Dielectric: The electric field of an isolated plane of
charge is −σ

2ε0
x̂ if x < 0 and σ

2ε0
x̂ if x > 0. Therefore, we can immediately write the field in regions I, III, IV ,

V I since they are outside of the conductor and dielectric.

~EI = ~EIII = − σ

2ε0
x̂
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~EIV = ~EV I =
σ

2ε0
x̂.

(c) Correct the Fields in the Conductor and the Dielectric: The electric field in the conductor is zero,
~EII = 0. The electric field in the dielectric is reduced by a factor of κ from the field that would exist if no
dielectric were present.

~EV =
σ

2ε0κ
x̂

Solution to Part(b)

(a) Select an Appropriate Gaussian Surface: Use the cylindrical Gaussian surfaces drawn which enclose the
left surface of the conductor, a, and the left surface of the dielectric, b.
(b) Apply Gauss’ Law to Surface a: If surface a has end area A, the charge enclosed is σc,ℓA. By Gauss’ Law,

EIIA − EIA =
Qenc

ε0
=

σc,ℓA

ε0

Since EII = 0,

−EI =
σc,ℓ

ε0

σc,ℓ = −ε0EI =
σ

2
.

(c) Conserve Charge on Conductor: Since the conductor is uncharged, σc,ℓ + σc,r = 0, therefore

σc,r = ε0EI =
−σ

2

Notice the signs of the charge density match the signs of the charges you drew in the figure.
(d) Apply Gauss’ Law to Surface b: The total charge enclosed in surface b, if it has end area A, is Qenc = σd,ℓA.
Apply Gauss’ Law,

EV A − EIV A =
Qenc

ε0
=

σd,ℓA

ε0

σ

2ε0κ
− σ

2ε0
=

σd,ℓ

ε0

σd,ℓ =
σ

2

(

1

κ
− 1

)

.

(e) Conserve Charge on the Dielectric: Since the dielectric is uncharged, σd,ℓ + σd,r = 0.

σd,r =
−σ

2

(

1

κ
− 1

)

=
σ

2

(

1 − 1

κ

)

Finally, an example of working a problem in cylindrical symmetry.

Example 14.8 Cylindrical Gaussian Surface with Volume Charge
Problem: A charge is distributed with a uniform charge density, +ρ throughout a solid rod of radius c, centered
on the ẑ axis. Compared to the distances we wish to find the field for, the rod is very long, so you may assume
it is infinite.

(a)Using Gauss’ Law, find the formulae for the electric field for all points inside and outside of the rod.

(b)A cylindrical conducting shell, centered on the ẑ axis, of inner radius a and outer radius b is placed
surrounding the rod. It carries a charge per unit length −λ. What is the surface charge density on
the inner surface of the shell?

(c)What is the surface charge density on the outer surface of the shell?

(d)Assume πc2ρ < |λ|. Draw the electric field lines for all regions on the figure. Emphasize important
properties of the fields.
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Conductor

End View of Cylinder

Volume

Air

Charge
 + 

 + 
 + 

 + 
 _ 

 _ 

 _ 

 _ 
 _ 

 _ 

 _ 
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 _ 

 _ 

Gaussian

I

II

III

IV
Surface

Definitions

Qc ≡ Charge of Conductor

Qv(r) ≡ Charge Enclosed in Volume at radius r

L ≡ Arbitrary Length of Objects

~Ei ≡ Electric Field in Region i

~r ≡ Radius Vector

c ≡ Radius of charged cylinder

−λ ≡ Charge per unit length on conductor

a ≡ Inner radius of conductor

b ≡ Outer radius of conductor

Solution to Part (a)

(a) Derive a General Expression for Gauss’ Law in Cylindrical Symmetry: Select a Gaussian surface that
is a cylinder co-axial with the ẑ axis or radius r and length L. The electric flux out of the Gaussian surface is
φe = 2πrLE(r) and applying Gauss’ law

φe = 2πrLE(r) =
Qenc

ε0

(b) Compute Electric Field in Region I: Now we apply our general result to each region. For any radius
in region I, the Gaussian surface encloses charge Qv(r) = πr2ρL. Notice the charge enclosed changes with the
radius. Substitute into the general expression for the field computed above

EI(r) =
πr2ρL

2πǫ0rL

~EI(r) =
ρr

2ǫ0
r̂

For any system where an arbitrary length L must be introduced, that L must cancel from the final answer, or else
you have done something very wrong.
(c) Compute Electric Field in Region II: In region II, the Gaussian surface always encloses all the volume
charge Qv(c) = πc2ρL. Substitute:

EII(r) =
πc2ρL

2πǫ0rL

~EII(r) =
c2ρ

2ǫ0r
r̂

When the conductor is not present this is the field at all points outside of the volume charge.
(d) Compute Electric Field in Region III: The electric field inside the conductor is zero for static systems.

~EIII(r) = 0.

(e) Compute Electric Field in Region IV : In region IV the total charge enclosed by the Gaussian surface is
Qenclosed = Qv(c) + Qc = πc2ρL − λL. Substitute:

EIV (r) =
πc2ρL − λL

2πǫ0rL

~EIV (r) =
πc2ρ − λ

2πǫ0r
r̂
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Solution to Part (b)

The electric field for the full system is computed above. In the conductor the field is zero, so by Gauss’ Law
the charge enclosed in a Gaussian surface in the conductor must be zero. The total charge enclosed is Qv(c) +
λc,innerL = 0 where λc,inner is the charge per unit length on the inner surface of the conductor. Therefore,

λc,inner = −πc2ρ

To convert this to the surface charge density we divide the total charge on a length L of the inner surface,
λc,innerL by the surface area 2πaL, giving

σc,inner =
λc,inner

2πaL
=

c2ρ

2a

Solution to Part (c)

The total charge per unit length on the conductor is −λ which is the sum of the charge on the inner and outer
surfaces, the only place charge can be: λc,outer + λc,inner = −λ , so

λc,outer = πc2ρ − λ

As above we convert this to the surface charge density,

σc,outer =
λc,outer

2πbL
=

πc2ρ − λ

2πb

Solution to Part (d)

We are given πc2ρ < |λ|, so |Qv| < |Qc|. This means that outside the conductor the net charge enclosed is
negative so the field lines go in. Inside the conductor only positive charge is enclosed so field lines point outward.
Since lines end on both the inside and outside of the conductor, there is negative charge on both surfaces. Using
a dashed line, draw the general Gaussian surface on the diagram. The surface is a cylinder with length L. Its
radius is r and its outward normal is r̂.
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Chapter 15

Non-Uniform Charge Densities

15.1 Non-Uniform Charge Densities

Our work with Gauss’ law so far used only uniform charge densities. This sometimes lead to charge enclosed
in the Gaussian surface that changed with the radius of the Gaussian surface, Qenc(r). Once the charge enclosed
was calculated, the field could be immediately found by using a form of Gauss’ law specialized for the symmetry.
No new techniques are required to handle symmetric charge densities that change with position.

You may or may not recall the shell method from calculus, but the shell method gives the charge of a
non-uniform spherical volume charge as:

Total Charge of a Radial Charge Distribution: If the volume charge density of a
system, ρ, depends only on the distance from the origin and is confined to the interval
(0, R), then the total charge of the system, Q, is given by

Q =

∫ R

0

4πr2ρ(r)dr

The formula above allows us to calculate the charge enclosed in a Gaussian surface for a non-uniform volume
charge.

Example 15.1 Gauss’ Law with a Non-Uniform Charge Density
Problem: A system of charge has spherical symmetry. For points r < R, the charge density is ρ(r) = ρ0e

− r
a

and zero for points r > R. Calculate the electric field everywhere.

Solution

(a) Draw the Field Map: Separate the system into two regions,
one inside and one outside the charge. The field lines begin at
various points throughout the volume charge. A sample Gaussian
surface of radius r is drawn.

 I

  II
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(b) Calculate the Field in Region I: A spherical surface of radius r encloses a charge of

Qenc(r) =

∫ r

0

4πr2ρ(r)dr =

∫ r

0

4πr2ρ0e
− r

a dr = 4πρ0

∫ r

0

r2e−
r
a dr

Look up the integral
∫

r2 exp(−r/a)dr = −a exp(−r/a)(a2 + 2ar + r2). Therefore

Qenc(r) = −4πρ0a exp(−r/a))(a2 + 2ar + r2)

∣

∣

∣

∣

r

0

= 4πρ0a(a2 − exp(−r/a)(a2 + 2ar + r2))

)

Therefore, the field in region I is

~EI(r) =
Qenc(r)

4πε0r2
r̂ =

4πρ0a(a2 − exp(−r/a)(a2 + 2ar + r2))

4πε0r2
r̂

(c) Calculate the Electric Field in Region II: The total charge enclosed by any Gaussian surface in region II is

Qenc(R) = 4πρ0a(a2 − exp(−R/a)(a2 + 2aR + R2)

~EII(r) =
Qenc(r)

4πε0r2
r̂ =

4πρ0a(a2 − exp(−R/a)(a2 + 2aR + R2))

4πε0r2
r̂

Note the expression we got was ugly, but the physics we did was easy and the math we just looked up.
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Chapter 16

Work and Energy

The course up to this point has presented a “force” picture of electrostatics. Our primary descriptive tool
has been the electric field which is the force per unit charge. For many situations it is more powerful to analyze
systems in terms of energy. This chapter reviews the energy concepts from UPI that we will need to understand
electrostatic energy.

16.1 Force and Work

In high school, work was force times distance. We need to improve this some-
what. Consider the two objects, shown to the right. The objects are in con-
tact at point P . Suppose object A exerts a force ~FAB on object B while
the point P moves from point ~r1 to ~r2. The displacement (movement) of
point P is ∆~r = ~r12 = ~r2 − ~r1. The work done by object A on object B is
WAB = ~FAB · ∆~r. Likewise, the work object B does on object A during the
displacement is WBA = ~FBA · ∆~r = −~FAB · ∆~r = −WBA by Newton’s Third
Law.

 P
 A  B

The sign of the work depends on the relative direction of the force and the direction the point the force applies

moves. If the point P moves in the same direction as the force applied by A, then the work done by A is positive.
This is the case when you try to push a box across the floor; the box moves in the same direction as the applied
force and the work you exert is positive. If the point P moves the opposite direction to the direction of the force
applied by A, then the work done by A is negative. This the case when you try to stop a box sliding toward
you; you apply a force opposite to the direction of the box’s motion, since it is still moving toward you until it is
brought to a stop, therefore you do negative work on the box. We can generalize this definition of work to include
forces that aren’t constant.

Definition of Work: The work done by A to move object B along the curve C is

WAB =

∫

C

~FAB · d~r

where FAB is the force A exerts on B and d~r points in the direction of the curve.

The integral in the definition of work is taken along the curve C. As usual to see where it comes from imagine
cutting the curve below up into little pieces of length ∆s. The vector d~r points from one end to the other end of
the small segment, as drawn below. The vector d~r has length ∆s and points in a direction tangent to the curve.
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 The Curve C

 1

 2

dr

∆s

θ

FAB

The component of force in the direction of motion is FAB cos θ. The work done by A on B as it moves from
point 1 to point 2 along the curve is

WAB =
∑

i

FAB∆s cos θi =
∑

i

~FAB · ∆~r

This work is just the component of the force along the curve at each point multiplied the length of the curve.

16.2 Total Energy

Let’s divide the universe into two pieces: the system and the environment. I
usually imagine the system as a box and environment as everything outside of
the box. The idea of a system is more general, any division of the universe
where you can clearly say which objects are in the system and which objects
are in the environment will do.

 System

 Environment

If two particles i and j are both in the system, then the forces between the particles, ~Fij and ~Fji, are called internal

forces. If the particle i is in the environment and particle j is in the system, then we will call i an external agent
and the force ~Fij , the force the external agent exerts on the system at point j or more briefly ~Fij is an external
force.

Imagine building a system from scratch, starting from an empty box with all the particles that make up the
system infinitely far apart. (With the particles scattered to the ends of the universe?) The person or thing, the

external agent, who builds the system does so by exerting the force ~Fi on each particle in turn needed to bring
the particle in from infinity and place it where it goes in the system. If the particle is to have kinetic energy,
the external agent then exerts some more force to give the particle the velocity it needs. It requires no work to
move the first particle into the empty box, since there are no particles in the system to exert a force to resist the
motion. The external agent must do work against the force of the first particle to place the second particle. Any
system can be built up one particle at a time. Define the total energy, ETOT , of the system as the total work to
build it. Note I am using the symbol ETOT for total energy not electric field.

Definition of Total Energy: The total energy of a system, ETOT , is the total work
required to build the system,

ETOT =
∑

i

Wi

where Wi is the work to place the ith particle in the presence of the particles j < i.

If the system is isolated, that is if there are no external forces acting on the system, then the total energy is
constant.
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Energy of an Isolated System is Conserved: The total energy of an isolated system
is constant,

ETOT = constant

If a system is not isolated, the external forces can change its total energy:

Conservation of Energy for a Non-Isolated System: If W is the total work done
on a system by external forces, then the change in the total energy, ∆ETOT , of the
system is equal to the work done on the system

W = ∆ETOT

16.3 Kinetic and Potential Energy

The total energy of the system can be made up of energy of many forms; chemical, thermal, etc. We will
restrict our discussion of energy to two forms; the energy of motion, called the kinetic energy, and the energy
stored in the arrangement of the system, called potential energy.

16.3.1 Kinetic and Potential Energy

Focus on a single particle, i, of our system. The energy associated with the motion of the particle is the
kinetic energy.

Definition of Kinetic Energy: The kinetic energy, Ki, of the particle i is

Ki =
1

2
miv

2
i =

1

2
mi~vi · ~vi

where mi is the mass of the particle and ~vi its velocity.

The particle also has potential energy Ui, an energy associated with its relative placement in the system and
the internal forces the other particles in the system exert. Potential energy is measured in reference to some point
that is defined to have zero potential energy. To measure the potential energy of particle i, freeze all the other
particles in place and measure the work to move particle i from the point of zero potential energy to the current
position of the particle.

Definition of Potential Energy: The potential energy of the ith particle is the work
an external agent would have to do to place it at its current position with all other
particles already in place

Ui = Wi =

∫

C

~Fi · d~r

where the curve C is path from the point of zero potential to its current location and
~Fi the net force exerted by the external agent.

If there are no losses in the system and the other particles of the system are fixed, then the potential energy
of particle i has a unique value at each point in space and can be written as a function of location, Ui(x, y, z).

16.3.2 Conservation of Energy

If a potential energy function exists for a particle, then any increase in kinetic energy of particle i is balanced
by a decrease in potential energy.

Conservation of Total Energy: If the potential and kinetic energy of the system fully
accounts for the energy of the system and the system is isolated then the total energy
is

ETOT =
∑

i

Ki + U = constant

where U is the total potential energy of the system defined as the work an external
agent would do to build the system piece by piece, placing each particle at rest. The
total energy of an isolated system is constant.
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This is more general than we need for this class. In most cases we will only allow one of the particles in
the system to move. Only that particle has kinetic energy and the potential energy of the system becomes the
potential energy of the particle. In this case, we choose the zero of potential to absorb the irrelevant potential
energy of the other particles.

Conservation of Energy for One Particle: If only the ith particle of the system can
move, then the total energy of the system can be written

ETOT = Ki + Ui = constant

where Ui is the potential energy of the ith particle and the energy is constant only if
the system is isolated.

This can be re-written in terms of the change in energy. For an isolated system the sum of the change in
kinetic energy, Ki, and the change in potential energy, Ui, is zero

∆Ki + ∆Ui = 0

If the particle only moves in the x-direction, then the potential energy has the form Ui(x). We can predict
many of the qualitative features of particle’s motion just from the shape of potential energy function. Consider
a particle released in the potential energy function below, with total potential energy ETOT .

 U(x)

 x

ETOT

 released turns  fast  slow

 A B

If a particle is released at point A with zero kinetic energy, the particle will travel to the left converting
potential energy into kinetic energy. Eventually, it reaches point B where the total energy of the particle is all
potential and the particle turns. Since there are no losses, the particle oscillates between A and B forever. If
we are given or can find the potential energy Ui(x) and the point where the particle is released, x0, then the
kinetic energy at any point can be predicted. Since the particle is released at rest, the kinetic energy at x0 is
zero, Ki(x0) = 0. The change in kinetic energy plus the change in potential energy is zero

∆Ki + ∆Ui = 0 = (Ki(x) − Ki(x0)) + (Ui(x) − Ui(x0)) = 0

or in terms of the total energy ETOT = Ki(x0) + Ui(x0) = Ui(x0)

Ki(x) + Ui(x) = ETOT = Ui(x0)

Example 16.1 Dr. Stewart Falls Through the Earth
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Problem: If a hole in the Earth opened up under my feet and
I fell through the hole to the center of the Earth, my potential
energy would be

U =
mgr2

2Re

where m = 100kg is my mass, g = 9.81m
s2 is the acceleration

of gravity, r is the distance from the center of the Earth, and
Re = 6.4×106m is the radius of the Earth. Calculate my velocity
as I pass through the center of the earth.

 U(r)

 rRe

ETOT

Solution

Since the hole opens up under my feet, my initial kinetic energy is zero, K(Re) = 0, when I an a distance Re

from the center of the earth. Conservation of energy tells us

∆K + ∆U = 0 = (K(0) − K(Re)) + (U(0) − U(Re)) =

(

(0 − 1

2
mv2

c ) + (0 − mgR2
e

2Re
)

)

where vc is my velocity at the center of the Earth. Solve for vc,

vc =
√

gRe =

√

(9.81
m

s2
)(6.4 × 106m) = 7, 800

m

s

Naturally, I fall completely through the Earth and only turn around as I reach the surface of the Earth on the
other side of the planet.

My wife felt you would be alarmed by the above expression after your experience with gravity in UPI. It is true
that g is only valid at the surface of the earth, but I can remember g. So to save looking up the gravitational
constant G and the mass of the earth M , I used GM = rR2

e. I also chose the zero of potential energy at the
center of the Earth rather than at the surface of the Earth.

16.4 Potential Energy and Force

Now, hold on just a second. We know forces make things move. When we release the mass, it moves to lower
potential energy, so there must be a force toward lower potential energy. There must be a fundamental relation
between force and potential energy. The definition of potential energy in one dimension is

U(x) =

∫ x

x0

Fxdx

where x0 is the point where the potential energy is zero and Fx is the force an external agent must exert to move
the particle with zero kinetic energy from x0 to x. By the fundamental theorem of calculus, this implies

Fx =
dU

dx

is the force the external agent must apply. The force F that the other particles exert on the particle must be
equal and opposite the force the external agent must exert.

c© 2007 John and Gay Stewart, The University of Arkansas 159



16.5. TWO DIMENSIONAL POTENTIAL ENERGY PLOTS CHAPTER 16. WORK AND ENERGY

Force is the Derivative of Potential Energy: The force, F , on the particle x from
the other particles of a system is

F = −dU

dx

where U(x) is the potential energy of the particle.

Example 16.2 Force on Dr. Stewart Falling Through the Earth
Problem: The potential energy of Dr. Stewart as he falls through the Earth is

U =
mgr2

2Re

where m is his mass, g is the acceleration of gravity, r is the distance from the center of the Earth, and
Re = 6.4 × 106m is the radius of the Earth.

Calculate the force on Dr. Stewart at the Earth’s surface and at the center of the Earth.

Solution

The force is the negative derivative of the potential energy

F (r) = −dU

dr
= − d

dr

mgr2

2Re
= −mgr

Re

where positive forces are directed upward. At the surface of the earth, F (Re) = −mg, which is what we expected.
At the center of the earth, F (0) = 0. So there is no force on me as I pass through the center of the earth at
7800m

s .

16.5 Two Dimensional Potential Energy Plots

Our field maps are two dimensional plots of charged systems. In the chapters to come, we will learn to add
lines of constant potential energy to the field maps to represent the energy of the system. Many of you are already
familiar with two dimensional representations of gravitational potential energy. The plot below is a topological
map of area around Steamboat Springs, Colorado. The lines on the map are lines (contours) of constant elevation.
Since gravitational potential energy mgh is proportional to height, this map is also a map of the gravitational
potential energy. The lines are labelled with the elevation above sea level in feet. The same reasoning and
conclusions you would draw from the map below carry over to the electrostatic equipotential maps we draw later.
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 A

 steep, high force
 B

 flat, low force
 C

Point A is a local maximum in the potential energy, the top of a mountain. If a mass, like a skier, was placed
at point A and released, they would feel a force toward lower potential energy and slide downhill. When the lines
of equal potential energy are close together, the vertical elevation is changing in a short distance and the terrain
is steeper. A skier placed at B would feel a large force down the mountain. Where the lines are farther apart,
like at C, the country is flatter and the force down the mountain less. Remember, a skier is accelerated by the
component of gravity along the ground.
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Chapter 17

Electric Potential

17.1 Introduction to Electric Potential

As we considered energy in Course Guide 16, we investigated the total energy of a system of particles, ETOT ,
the potential energy, Ui, of one of the particles of the system due to the internal forces of other particles in the
system, and the work done by an external agent to move the particles around. In this chapter we get specific about
the forces; we will investigate work and potential energy for a system of charged particles. We will investigate the
total energy of a system of charged particles next chapter.

17.1.1 Potential and Potential Difference

Charged particles exert forces on one another. So if we take as our system a bunch of charged particles q1, q2,
..., qn, each charged particle, qi, exerts a force ~Fij = qj

~Eij on every other particle qj , where ~Eij is the electric
field due to the ith particle at the location of j. An external agent (something outside of the system that exerts
a force on the particles in the system) must do work to move charge qi around in the field of the other particles.
To move charge qi from point ~rA to point ~rB along a path, an external agent must do work W i

AB , defined as

W i
AB =

∫

A→B

~F i
ext · d~ℓ =

∑

Component of Force along Path · Length of Path

where ~F i
ext is the force the external agent exerts and d~ℓ points along the path. The integral is taken along the

path the particle moves.
If the external agent does not change the kinetic energy of the ith particle as it is moved along the path, then

the work done is the change in potential energy ∆U i
AB between the points ~rA and ~rB ,

W i
AB = ∆U i

AB if ∆Ki = 0.

Only changes in energy actually matter in physics, so we get to pick the point where the energy is zero. Let the
potential energy be zero at the point ~r0 which we will call the reference point. For systems of charged particles,
the reference point will usually be a point far from the system of charge, “a point at infinity”. With a choice of
reference point, we can define the potential energy, U i(~rA) of the ith particle at the point ~rA as the potential
difference between the point ~r0 and the point ~rA,

U i(~rA) = ∆U i
0A = W i

0A

where the work must be done without changing the kinetic energy. So if we could get the work somehow, we
could get the electric potential energy, the part of the potential energy due to the internal electric force.

Imagine the external agent moves the particle i at constant velocity so that the change in kinetic energy is
zero. To do this, the external agent must exert a force ~F i

ext which exactly balances the total force exerted by the
other charges of the system on charge i,

F i
ext = −

∑

j 6=i

~Fji = −qi

∑

j 6=i

~Eji = −qi
~Ei
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where ~Ei is the total electric field from the other charges in the system at the location of charge i. Substituting
this into our definition of work gives

W i
AB = ∆U i

AB = −qi

∫

A→B

~Ei · d~ℓ

Rather than working with electric force, we found working with electric force per unit charge, electric field, more
powerful. While working with energy, we will find working with the difference in electric potential energy per unit
charge more useful.

Definition Electric Potential Difference: The electric potential difference ∆VAB

between the point A and the point B along a path ~ℓ in an electric field ~E is defined to
be

∆VAB = −
∫

A→B

~Ei · d~ℓ

where ~Ei is the total electric field from the particles j 6= i, that is the other particles
in the system. We will shorten the name of the electric potential difference to simply
potential difference for this class.

Definition of Electric Potential: The electric potential V (~rA) at the point ~rA is the
potential difference between a reference point, ~r0, defined to have zero potential energy
and the point ~rA,

V (~rA) = ∆V0A

We will shorten electric potential to potential for this class.

Units of Electric Potential and Electric Potential Difference: The SI unit for
electric potential V and electric potential difference ∆V is the volt V. The symbol

representing potential and the symbol representing its units are very similar. Be

sure to look at the context of the symbols to determine which meaning should be

given. Equivalent units for electric potential are:

1V = 1
J

C
= 1

N · m
C

New Units for Electric Field: When working with electric field it is often more con-
venient to use the units V/m instead of N/C for the electric field. They are equivalent.

1
V

m
= 1

N

C

Electric Potential is Work per Unit Charge: This electric potential difference be-
tween a point A and a point B, ∆VAB , is the work, WAB , per unit charge an external
agent must do to move a charge q from A to B along the path

∆VAB =
WAB

q

Difference in Electric Potential Energy: The difference in electric potential energy
of the charge q between the point ~rA and the point ~rB is the charge multiplied by the
potential difference

∆UAB = q∆VAB

Computing Potential Difference from Potential: The potential difference between
two points ~rA and ~rB can be computed from the electric potential

∆VAB = V (~rB) − V (~rA) = VB − VA

The above rather lengthy set of definitions means we can calculate the change in potential energy, ∆U , of a
charge q as it moves from point A to point B using

∆U = q(V (~rB) − V (~rA))
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and from there conserve energy and get the change in kinetic energy and then the change in velocity. The electric
potential is the integral of the electric field. The electric field can change discontinuously, for example inside and
outside of a charged shell. An integral can not change discontinuously, therefore:

Continuity of Electric Potential: The electric potential is a continuous function, even
at boundaries of regions where there is surface charge. A discontinuous potential would
result in an infinite electric field.

Electric field may be added by the law of linear superposition, therefore electric potentials and electric potential
differences may be added as long as a consistent reference point is chosen.

Additivity of Electric Potential: The total electric potential may be found by adding
the potential produced by individual charges as long as a consistent reference point is
used.

Example 17.1 Work Done by a Car Battery
Problem: The potential difference across the terminals of a car battery is about 12V. How much energy is
added to an electron (qe = −1.602 × 10−19C) as it moves from the positive to the negative terminal?

Solution

The work done by the battery W = qe∆V = (−1.602 × 10−19C)(−12V) = 1.9 × 10−18J is equal to the energy
added to the electron. From this number you may deduce that many electrons participate in electric current.

Example 17.2 Electron Accelerated Through Large Potential
Problem: The charge of the electron is −1.6 × 10−19C and the mass is 9.11 × 10−31kg. An electron initially
at rest is accelerated through 30, 000V. How fast is it going (neglecting relativity)?

Select One of the Following:

(a) 3 × 108 m
s (b) 1.05 × 1016 m

s (c-Answer) 1 × 108 m
s (d) 9.8 × 10−8 m

s

Solution

(c) 1 × 108 m
s : As the electron accelerates, its potential energy due to the electric field will be converted to

kinetic energy, and so by Conservation of Energy

|∆U | = |∆K| = Kf

The difference in potential energy is related to the difference in potential through ∆U = q∆V so

|q∆V | = Kf =
1

2
mv2

f

vf =

√

2q∆V

m
= 1.0 × 108 m

s
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17.1.2 Electric Potentials of a Single Variable

The definitions of the previous section apply for any electric field, no matter how complicated. Many systems
have electric fields that have a simple directional dependance, like ~E = E(x)x̂ or ~E = E(r)r̂. All of the highly

symmetric fields we have worked with fall into this category. Let’s consider a field with the form ~E = E(r)r̂. The
potential difference between the point ~rA = rAr̂ and the point ~rB = rB r̂ is

∆VAB = −
∫

A→B

~E · d~ℓ = −
∫ rB

rA

E(r)dr

if we choose to integrate outward from A to B along a radial path such that d~ℓ = r̂dr. If we choose A as the
reference point and let ~rA become ~r0 and ~rB become ~r the potential becomes

V (r) = −
∫ r

r0

E(r)dr.

or using the indefinite integral:

Electric Potential for a Field that Points Along a Coordinate Direction: If the
electric field has the form E(x)x̂, E(y)ŷ, E(z)ẑ, or E(r)r̂ then the electric potential

for this field is given by the negative derivative of the field. If, for example, ~E = E(x)x̂,
then

V (x) = −
∫

E(x)dx + C

where C is the constant of integration and is chosen so that V (r0) = 0.

The fundamental theorem of calculus lets us undo the integral with a derivative, which allows the calculation
of field from potential.

Calculation of Electric Field from Potential for Potentials with One Variable: If
the electric potential depends on only one variable, then the electric field is the negative
integral of the potential with respect to that variable. For example, if the potential is
V (x) then the electric field is

~E = −dV (x)

dx
x̂

where similar relations apply for V (y), V (z), and V (r).

We will explore the properties of electric potential qualitatively in the next section, then work a bunch of
examples for the rest of the chapter.

17.1.3 Independence of Path

The potential has an additional interesting property, the potential difference between two points does not
depend on the path you take between two points. This allows us to take a problem where we are asked to
compute the potential along a path where integration is difficult or impossible and select a different path between
the two points which makes the calculation possible.

Independence of Path: Neither the work to move an electric charge nor the potential
difference between any two points in an electric field depends on the path taken through
the field. This means we can use the most convenient path to compute work and
potential difference.

An alternate and equivalent statement of independence of path is that the total work to move a charge around
a closed path in a static electric field is zero.

Work Around any Closed Path is Zero: If a charge is moved around a closed path
in an electric field so that it returns to its starting point, the total work done on the
charge is zero.
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Independence of path sort of looks like an insignificant side feature, but it is actually a new fundamental law
with the same importance as Coulomb’s law. We will study this law when we get to magnetism, where is will
be called Faraday’s law. So independence of path is really an application of Faraday’s law, where there are no
changing magnetic fields. With that, I’ll leave Faraday’s law for magnetism. Independence of path places some
strong constraints on what kind of static electric field maps we can draw.

Electric Field Lines Cannot
Be Closed Curves: The elec-
tric field map at the right can-
not be the field map solely of a
static electric field. If a charge
q was dragged around the
closed field line, work would
be done at all points along the
path, and net work would be
done in a full circuit around the
path, which violates indepen-
dence of path. So there are
no whirlpools in electric field
maps. This is unfortunate be-
cause if such a field existed, we
would have built a perpetual
motion machine. Such electric
fields are possible if a changing
magnetic field is present.

 Illegal Static Electric Field Map

17.1.4 Batteries

A battery is a device which maintains a fixed potential difference between its two terminals. The only way to
maintain or create a potential difference is to move charge. A battery is actually a chemical engine for pumping
charge. The engine runs by using a chemical reaction to supply the energy to move the charge. Since the internal
chemical reaction of the battery supplies energy to the system, the battery’s internal energy must be included in
any energy conservation equation.

Batteries as a Source of Potential Difference: A battery with voltage Vbatt estab-
lishes a potential difference of ∆V−+ = Vbatt = V+ − V− between the two terminals of
the battery.

Circuit Symbol for Battery: A battery is represented in
an electric circuit by the symbol to the right. The potential
difference across the battery is measured from the negative
to the positive end, ∆Vbat = VB − VA

 B

 A

∆V

Since we have finally brought up the idea of an electric circuit, it is a good time for introducing our basic
instrument for measuring potential difference, the voltmeter (the lab multimeter set in the DCV region).

17.2 Qualitative Features of Electric Potential

17.2.1 Qualitative Features of Electric Potential

If given an electric potential function or the electric potential difference between two points, the direction of
the electric field can be found. The relative size of the field can be found if we know ∆V for several points.
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An electric field is drawn to the right along with a path along which an external
agent moves a positive charge. If a positive charge, q, is moved from A to B
the electric force, ~F , points opposite the direction of motion. An external agent
would have to exert a force opposite to this force to get the charge to move
from A to B. Since the external agent exerts a force in the direction the particle
moves the work done by the external agent is positive. Therefore the potential
energy increases as a positive charge moves from A to B and VB > VA.

 A

 B

  q

F

Potential Increases Opposite to the Direction of the Electric Field: The electric
potential increases along a path that moves opposite to the direction of the electric
field.

We can turn this around and use it figure out the direction of the field from the potential. If ∆VAB > 0 then
you have to do work to move a positive charge from point A to B, therefore the electric field must on average
point from B to A so that the electric force on the charge resists the motion.

Reasoning from Potential Difference to Electric Field: The electric field points to
lower potential.

Since the electric field for a simple system is given by E = −dV
dx , the faster the potential changes with position,

the stronger the field.

Reasoning About the Size of the Field Based on the Potential: The stronger the
electric field, the greater the rate the electric potential changes with distance. Therefore,
places where the electric potential changes quickly are places where the electric field is
stronger.

There is no Potential Difference Across a Conductor: Since the electric field in a
conductor is zero, there is no potential difference between different points in a conductor
(if all charge is stationary).

Example 17.3 Reasoning from Potential to Field
Problem: Consider relative potentials on the x axis of 10V at x = 2m and 12V at x = 2.1m. The electric field
is parallel to the x-axis. Which direction does the average electric field point between these two positions on the
x axis?

Solution

For the given potentials, the potential difference between x = 2m and x = 2.1m is ∆V2,2.1 = 2V > 0, so the
electric potential energy of a positive charge increases as it is moved from x = 2m to x = 2.1m. Since the
potential energy increases an external agent must do work ON a positive charge to move it from x = 2m to
x = 2.1m. For an external agent to have to push on a positive charge to move it in the +x̂ direction, the electric
field must point in the −x̂ direction.

Example 17.4 Where is Field Strongest?
Problem: For some configuration of charge, the electric potential is given by the function, V (x) = γx2, where
γ > 0 is a constant.

(a)What direction does the electric field point for points x > 0?

(b)Is the average electric field larger at (0cm, 1cm) or (1cm, 2cm)?

Solution to Part(a)
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The electric field points from high potential to low potential, since you have to do work on a positive charge to
move it to higher potential. Therefore, the electric field points in the negative x direction.

Solution to Part(b)

The electric field is strongest where the potential changes the fastest; therefore, the electric field is strongest at
(1cm, 2cm).

17.2.2 Drawing Equipotential Surfaces

Our field maps are drawings of the electric force per unit charge. In this section, we learn how to add a
drawing of the electric energy per unit charge to the maps. An equipotential is a line (or surface in 3-D), where
all points on the line are at the same potential or equivalently where there is zero potential difference between
two points on the line. Since we draw in two dimensions our equipotentials are lines, but charges actually exist
in three dimensions so equipotentials are really surfaces. First, some properties of lines of equipotential, then an
example showing how to add them to a field map.

Equipotentials Perpendicular to Field Lines: Equipotentials cross field lines at right
angles. Since the potential difference between points is an integral of ~E · d~l, it takes no
work to move ⊥ to the electric field.

Spacing Proportional to
Field: The spacing of
the equipotential surfaces
should represent approxi-
mately equal jumps in po-
tential. So the spacing be-
tween surfaces should in-
crease as the separation of
field lines increases (and
therefore the electric field
decreases).

0V -1V 0V -1V

Equipotentials Do Not Cross: If two equipotentials cross, then the must have the
same potential. If they have different electric potentials then the electric potential has
two values at the same point. Not allowed.

Conductors are equipotential surfaces: Since ~E is perpendicular to the surface of a
conductor, the surface is an equipotential surface. Since ~E = 0 inside a conductor, all
points in that conductor are at the same potential, because it takes no work to move
a charge in zero electric field. Make sure none of the equipotentials you add to a field
map cross a conductor.

From an electric field map with equipotentials, we can reason about the relative magnitude of the potential
along different equipotentials and the relative work to move from point to point on a field map.

No Work to Move along Equipotential: Since an equipotential is, by definition, all
at the same potential, it takes no work to move along an equipotential.

Electric Potential Increases Opposite to
Direction of Field Lines: If two equipoten-
tials are connected by an electric field line,
the equipotential the field lines point to will
have lower potential. Potential difference is
work per unit charge, so if we would have to
work to move a positive charge from point
2 to point 1, as above, then the potential is
higher at point 1.

V1
V2
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Example 17.5 Drawing Equipotential Surfaces
Problem: Two point charges +Q are at x = ±1cm along the x axis. Draw the field map and the equipotential
surfaces.

Solution

(a) Select Points for Equipotentials: After drawing the
field map, plan the spacing of the equipotentials. The spac-
ing of the equipotentials should yield an approximately equal
spacing in potential. To get this we choose, along some line, a
set of points whose spacing increases with decreasing electric
field, that is with decreasing density of electric field lines. For
our sample problem, the points A, B, C, and D are chosen.
The spacing between A and B sets the scale, the spacing be-
tween B and C is somewhat larger because the field lines are
farther apart. The spacing between C and D is much larger
because the field lines are very far apart.

+Q +QABCD

(b) Draw equipotentials: Starting and ending at each point you selected, draw a closed curve that intersects
each field line at a right angle. Some of the curves may close outside the area of your figure.

+Q +QABCD

Equipotentials

close together

where field is 

strong

Equipotentials

far apart

where field

is weak
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Example 17.6 Drawing Equipotentials
Problem: Draw the equipotentials through the points A,
B, and C, in the drawing at the right.

A

B

C

Solution

The equipotentials cross the field lines at right angles.

A

B

C

Example 17.7 Equipotentials of a Dipole Field Map
Problem: A +1µC charge is at (−1cm, 0, 0) and a −1µC charge is at (1cm, 0, 0). Draw the field map and
equipotentials.

Solution

The field map is just that of a dipole. To draw the equipotentials, draw dashed lines that are perpendicular
everywhere to the field lines.
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 _

Example 17.8 Equipotentials of Dipole and Square Conductor
Problem: The figure below shows a +Q and −Q point charges with an uncharged conducting slab in between
the charges.

(a)Draw the field map in the region between the conductors using 8 lines per +Q. You may draw the
diagram on the figure below.

(b)Draw 8 equipotential surfaces.
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 -Q

 +Q

 Conductor

Solution to Part (a)

The field lines must be perpendicular to the conductor surface.
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 -Q

 +Q

 Conductor

 +  +  +  +  +  +  +  +

 _  _  _  _  _  _  _  _

Solution to Part (b)

The equipotentials should be perpendicular to the field lines.

Example 17.9 Reasoning About Potential Difference
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Problem: Which is larger, the work needed to move a −1µC
charge from point A to point B or from point A to point C
along the paths drawn?

A

B

C

Solution

As we move along the field line shown with greater thickness
in the figure at the right, the equipotentials 1, 2, 3, and 4 are
crossed. A positive charge would be dragged along this line by
the field; therefore, the potential of the equipotentials that the
field line crosses can be ordered, V1 > V2 > V3 > V4. Going
from A to B leaves a charge at a potential between V3 and V4.
Going from A to C leaves the charge with a potential less than
V4. Therefore, the potential difference, |∆VAB | < |∆VAC |, but
since both potential differences are negative, ∆VAB > ∆VAC . If
the inequality is multiplied by a negative charge, q, the sign flips
around again.

q∆VAB < q∆VAC

Therefore, the work to move from A to C is larger.

A

B

C

 1
2  3  4

17.3 Computing Potential from Field

17.3.1 Computing Potential Difference Directly from Definition

The new fundamental skill we need to learn is to compute the potential difference given (or having solved for)
the electric field. To do this, we have to do the integral defining the electric potential. The integral that we have
to do is a path integral that goes through a vector field. We have a few tricks available that are very helpful in
reducing this daunting task to one a bit more tractable.

Select and Draw Path of Integration: The key step to using the definition of electric
potential is to choose a convenient path of integration and to be able to write the simple
integral which results from choosing this path. This is the path you push the charge
along to move it from point A to point B.

Break Up Path: The most convenient path is sometimes a path made up of segments
where some segments are parallel to the field and some are perpendicular to the field.
The potential difference along the segments of the path perpendicular to the field will
be zero.
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Compute the Magnitude: Use the definition of potential to compute the magnitude of
the electric potential, and then reason about the sign. It is sometimes remarkably hard
to get the sign correct out of this path integral. So by definition of electric potential,

|∆Vab| =

∣

∣

∣

∣

−
∫

path(a→b)

~E · d~ℓ

∣

∣

∣

∣

The sign of the potential difference will be the sign of the work you would do to move
a positive charge from a to b.

Reason About Work: The electric potential is work per unit charge, so if you would
have to do work to move a positive charge from point A to point B, then the potential
is higher at point B than point A, and ∆Vab > 0.

Example 17.10 Find the Electric Potential Difference from the Electric Field
Problem: A uniform spherical volume of charge has charge density ρ and outer radius redge. Compute the
potential difference between the outer edge of the sphere at redge and the center, ∆Vec.

Solution

+

+

+

+

Path of Integration

+

+

+

+

 e

 c

r

Definitions

~E ≡ Electric field

∆Vec ≡ Potential Difference Between Outside and Center

redge ≡ Radius of Sphere

Strategy: Find the electric field. Use definition of electric potential, integrate it to get the magnitude of the
potential difference, then use potential as work per unit charge to get the sign.
(a) Solve for the Electric Field: In the volume charge, a Gaussian surface of radius r encloses a total charge
Qenc = 4

3πr3ρ. Using the form of Gauss’ law for spherical symmetry, this yields

~E =
Qenc

4πε0r2
r̂ =

4
3πr3ρ

4πε0r2
r̂

~E =
ρr

3ε0
r̂

(b) Use Definition of Electric Potential: The electric potential difference between a point on the edge of the
sphere and the center is

∆Vec = −
∫

path

~E · d~ℓ

Separate the calculation into two parts: (1)the calculation of the magnitude |∆Vec| by doing the integral, (2)
computing the sign by reasoning about the work.
(c) Select Path of Integration and Perform the Integral: Select a path of integration that makes the
integral as easy to do as possible. Any path between the two points will yield the correct result. Draw the path
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of integration on your diagram. Use the chosen path to convert the path integral to a simple integral. Choose a
path of integration from the edge to the center along a radius. The vector d~ℓ = −r̂dr, so ~E · d~ℓ = −E(r)dr,

|∆Vec| =

∣

∣

∣

∣

∫ r=0

r=redge

E(r) dr

∣

∣

∣

∣

|∆Vec| =

∣

∣

∣

∣

∫ r=0

r=redge

ρr

3ε0
dr

∣

∣

∣

∣

=
ρr2

edge

6ε0

(d) Reason About the Sign: Use the definition of potential difference as work done per unit charge to fix the
sign. If ρ > 0, then the field points outward and we would do work on a positive charge to move it from a point
on the edge to the center, so if ρ > 0 ∆V > 0, so

∆Vec =
ρr2

edge

6ε0

The answer is also correct if ρ < 0, because the sign of ρ takes care of the sign of the potential.

Example 17.11 Potential Difference along y-axis
Problem: An electric field is given by ~E(y) = γy2ŷ, where γ = 150 N

Cm2 . What is the electric potential difference
∆VAB between point A at (0, 2cm, 0) and point B at (0, 1cm, 0)?

Solution

(a) Use Definition of Electric Potential: The electric potential difference between point A and point B is

∆VAB = −
∫

A→B

~E · d~ℓ

Separate the calculation into two parts: (1)the calculation of the magnitude |∆VAB | by doing the integral, (2)
computing the sign by reasoning about the work.
(b) Select Path of Integration and Perform the Integral: Select a path of integration that makes the integral

as easy to do as possible. Choose a straight path along the y-axis from point A to point B, therefore d~ℓ = −ŷdy.
To simplify notation let ~rA = (0, a, 0) where a = 2cm and ~rB = (0, b, 0) where b = 1cm. The path of integration

is drawn below. Substitute d~ℓ and ~E(y) into the expression for potential and perform the integral.

∆VAB =

∣

∣

∣

∣

−
∫ b

a

~E(y) · (−ŷdy)

∣

∣

∣

∣

|∆VAB | =

∣

∣

∣

∣

∫ b

a

γy2 dy

∣

∣

∣

∣

=

∣

∣

∣

∣

(

γ
y3

3

∣

∣

∣

∣

b

a

)
∣

∣

∣

∣

=

∣

∣

∣

∣

γ

3

∣

∣

∣

∣

∣

∣

∣

∣

(

b3 − a3

)
∣

∣

∣

∣

|∆VAB | =

∣

∣

∣

∣

(150 N
Cm2 )((0.01m)3 − (0.02m)3)

3

∣

∣

∣

∣

= 3.5 × 10−4V

(c) Reason About the Sign: Use the definition of potential difference as
work done per unit charge to fix the sign. Since γ > 0, the electric field points
in the +ŷ direction, so we have to do work to move a positive test charge from
y = 2cm to y = 1cm, therefore ∆VAB > 0. Therefore,

∆VAB = 3.5 × 10−4V.

The field and path of integration is drawn to the right. Note since the field is
getting stronger in the y direction, more field lines start as y increases. This
means the region contains net charge.  y

 a

 b
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17.3.2 Calculating Potential Difference from Potential

The examples above both involve electric fields that point along coordinate directions, in the cases above ŷ
and r̂. For these cases, we can calculate the potential, V , up to a constant by simply integrating the field. The
potential difference can then be calculated by ∆VAB = VB − VA.

Example 17.12 Electric Potential Difference from Potential for a Radial Field
Problem: A uniform spherical volume of charge has charge density ρ and outer radius redge. Compute the
potential difference between the outer edge of the sphere at redge and the center, ∆Vec.

Solution

+

+

+

+

Path of Integration

+

+

+

+

 e

 c

r

Definitions

~E ≡ Electric field

∆Vec ≡ Potential Difference Between Outside and Center

redge ≡ Radius of Sphere

(a) Solve for the Electric Field: In the volume charge, a Gaussian surface of radius r encloses a total charge
Qenc = 4

3πr3ρ. Using the form of Gauss’ law for spherical symmetry, this yields

~E =
Qenc

4πε0r2
r̂ =

4
3πr3ρ

4πε0r2
r̂

~E =
ρr

3ε0
r̂

(b) Use Definition of Electric Potential: Since the electric field points only in the r̂ direction, the definition
of electric potential difference allows the calculation of the electric potential through

V (r) = −
∫

E(r)dr

where the constant of integration can be used to make it so the potential is zero at the reference point.
(c) Perform the Integral: Substitute the value of E(r) calculated from Gauss’ law.

V (r) = −
∫

ρr

3ε0
dr = −ρr2

6ε0
+ C

where C is the constant of integration.
(d) Calculate the Potential Difference: The electric potential difference between the edge, redge, and the
origin is

Vec = V (0) − V (redge) = C −
(

−
ρr2

edge

6ε0
+ C

)

=
ρr2

edge

6ε0

where the sign will be correct if we did the calculus correct. Note, the constant of integration, which contained
our arbitrary choice of the zero of potential cancelled when we calculated potential difference.
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We didn’t need to set the constant C to calculate the potential difference in a single region. The normal
choice for the reference point in a spherical problem is V (∞) = 0, but since the field is different for r > redge

the potential function calculated is incorrect if r > redge. We could however choose to report the potential with
the center of the sphere as the reference point. In this case V (0) = 0 → C = 0.

Example 17.13 Potential Difference along y-axis
Problem: An electric field is given by ~E(y) = γy2ŷ, where γ = 150 N

Cm2 . What is the electric potential difference
∆VAB between point A at (0, 2cm, 0) and point B at (0, 1cm, 0)?

Solution

(a) Use Definition of Electric Potential: Since the electric field points only along the coordinate axis, the
definition of potential difference can be used to calculate the potential as

V (y) = −
∫

E(y)dy

where the constant of integral will be used to fix the zero of potential.
(b) Perform the Integral: Substitute the function given and perform the integral

V (y) = −
∫

γy2dy = −γ

3
y3 + C

(c) Calculate Potential Difference: Once again let ~rA = (0, a, 0) and ~rB = (0, b, 0). The potential difference
between point A and point B is

∆VAB = V (b) − V (a) =

(

− γ

3
b3 + C

)

−
(

− γ

3
a3 + C

)

=
γ

3
(a3 − b3)

Substitute,

∆VAB =
150 N

Cm2

3
((2cm)3 − (1cm)3 = 3.5 × 10−4V.

where the sign should be correct if we’ve integrated properly.

To complete the calculation of the potential above, we would have to set the constant C. For planar systems,
we usually choose V (0) = 0. With this choice C = 0. You can check either of the above calculations by using
E(y) = −dV/dy for potentials of only one variable.

17.3.3 Electric Potential Difference in Uniform Field

An important and simple example of the calculation of the electric potential difference from the electric field
comes from systems with uniform fields. We encountered these fields over and over in systems of parallel planes.
Suppose the field is uniform in the x direction, ~E = Ex̂. If E > 0, the field points in the positive x direction.
Since the potential decreases in the direction of the electric field, the potential decreases as x increases. Using
the definition of potential difference,

|∆VAB | =

∣

∣

∣

∣

−
∫

Edx

∣

∣

∣

∣

=

∣

∣

∣

∣

E

∫

dx

∣

∣

∣

∣

= |E∆x|

where ∆x is the distance moved in the x direction. Since potential decreases as x increases, ∆V = −E∆x.

Potential Difference in Uniform Field: If the electric field is uniform in the x direction,
~E = Ex̂, then the potential difference between a point xa and the point xb is

∆Vab = −E(xb − xa)

or the potential difference between two points a distance d apart in the x direction is
|∆V | = Ed.

c© 2007 John and Gay Stewart, The University of Arkansas 178



17.4. CALCULATING POTENTIAL DIRECTLY FROM CHARGE CHAPTER 17. ELECTRIC POTENTIAL

Potential in a Uniform Field: If a field is uniform and directed in the x direction,
~E = Ex̂, and the point x = 0 is selected as the zero of potential, then the electric
potential is

V (x) = −Ex

Example 17.14 Charge on Pie Pans
Problem: The pie pans have a radius of about 10cm. Equal and opposite charges are placed on two pie pans
that are parallel and 3mm apart. How much charge must be placed on the positive pan (an equal and opposite
charge is placed on the negative pan) to generate a potential difference between the pans of 1200V?

Solution

The electric field between equal and opposite planes of charge
is

~E =
σ

ε0
x̂.

The potential difference for a uniform field is

|∆V | = |Ed| =

∣

∣

∣

∣

σd

ε0

∣

∣

∣

∣

,

where σ is the charge density.
This means that the charge density required to set up a
1200 V potential difference is

σ =
∆V ε0

d
=

(1200V)(8.85 × 10−12 C2

Nm2 )

0.003m

= 3.54 × 10−6 C

m2
.

The total charge is the density multiplied by the area of the
plate,

Q = σA = σπr2 = (3.54 × 10−6 C

m2
)π(0.1m)2

= 1.11 × 10−7C.

+

-

+

+

+

+

-

-

-

-

x

d

17.4 Calculating Potential Directly from Charge

17.4.1 Electric Potential of a Point Charge

We argued that the electric field, ~E, of any system of charge could be found from Coulomb’s law and the
law of Linear Superposition by cutting the system into small chunks, qi, calculating the field of each chunk, and
adding

~E(~rP ) =
∑

i

kqi

r2
iP

r̂iP

We can substitute this electric field into the definition of potential difference to find the potential difference
between point A and B for any system of point charges

∆VAB = −
∫

A→B

~E(~rP ) · d~ℓ =
∑

i

(

kqi

r2
iP

r̂iP · d~ℓ

)
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but the thing in parenthesis is just the potential difference due to a point charge. So we can calculate any potential
difference simply by summing the potential difference due to each point charge. This can be made even cleaner
if we focus on potential instead. Since a point charge has a field that only depends on r, we can calculate the
potential of the point charge simply by integrating

V (r) = −
∫

E(r)dr = −
∫

kq

r2
dr =

kq

r
+ C

The reference point usually chosen from a point charge is V (∞) = 0, so

Electric Potential of Point Charge: The electric potential, V1(~rA), at point ~rA due
to a point charge q1 at point ~r1 is:

V1(~rA) =
kq1

r1A
,

where r1A is the distance from point ~r1 to the point A. The reference point for this
potential is a point infinitely far from the charge.

The potential of a point charge depends only on the distance, r, from the charge.

Example 17.15 Reasoning about Moving a Charge in an Electric Field
Problem: A point charge with charge Q = 5µC is located at the origin. How much work is required to move a
−1µC charge from (10cm, 10cm, 0) to (−10cm, 10cm, 0)?

Solution

The potential of a point charge just depends on the distance from
the charge. Since we begin and end at the same distance from the
point charge, the potential difference between the beginning and
ending points is zero. Therefore, the work to move any charge
between the two points given is zero.

Q

Path

For one point charge, all we need to compute the potential is the distance between the charge and the point
where we want to know the potential. No vectors, now isn’t life getting better all the time? We can compute the
potential of any system of charge simply by adding the potentials.

Electric Potential of a System of Point Charges: Because potential is additive, the
electric potential of a system of point charges qi is the sum of the potentials of the
individual charges

V (~rP ) =
∑

i

Vi(~rP ) =
∑

i

kqi

riP

where riP is the distance from the charge qi to the point P .

Example 17.16 Electric Potential of a Point Charge
Problem: A 3µC charge is located at x = 4cm, y = 2cm, z = 0cm, Point 1. Compute the electric potential at
point P at x = −3cm, y = −3cm, z = 0cm, if the potential at ∞ is zero.
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Solution

x(cm)

y(cm)

2

4

2 4-2-4

-2

-4P

r1P

 q1

Definitions

q1 = 3muC ≡ Charge producing the potential

~r1 = (4cm, 2cm, 0cm) ≡ Location of q1

P ≡ Location where potential is computed

~r2 = (−3cm,−3cm, 0cm) ≡ point P

V1P ≡ Potential at P due to q1

V0 ≡ Arbitrary constant in point charge equation

r1P ≡ Distance from q1 to P

(a) Use Electric Potential of Point Charge: The electric potential at P from the field of q1 is

V1P =
kq1

r1P

(b) Compute distance between q1 and P: Observing the diagram, the distance between q1 and P is found by
applying the PythagoreanTheorem,

r1P =
√

(−7cm)2 + (−5cm)2 + 0 = 8.6cm

(c) Substitute and Solve:

V1P =
(8.99 × 109 Nm2

C2 )(3 × 10−6C)

0.086m

V1P = 3.14 × 103 Nm

C
= 3.14 × 103V

The total potential function for a set of point charges is just the sum of the potential functions of the individual
point charges.

Example 17.17 Compute Electric Potential of a Collection of Point Charges
Problem: Given 1µC charges at ± x = 4cm and ± x = 1cm, compute the electric potential at the origin if the
potential at ~r∞ is zero.

Solution
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xcm

ycm

2 4-2-4

-2

-4

2

4

 q1  q2
 q3  q4

r10

r20 r30

r40

Definitions

Vi0 ≡ Potential at origin from qi

q1 = q2 = 1µC ≡ Point charges

q3 = q4 = 1µ ≡ Point charges

~r10 = (4cm, 0, 0) ≡ Vector from 1 to 0

~r20 = (1cm, 0, 0) ≡ Vector from 2 to 0

~r30 = (−1cm, 0, 0) ≡ Vector from 3 to 0

~r40 = (−4cm, 0, 0) ≡ Vector from 4 to 0

V0 ≡ Electric Potential at Origin

(a) Write Equation for Total Potential: By Principle of Additivity of Electric Potential, the total potential is
the sum of the potentials from the individual charges. The total potential at the origin is

V0 =
∑

i

kqi

ri0

V0 = V10 + V20 + V30 + V40

where Vi0 is the potential due to charge i at the origin.
(b) Use Symmetry: Since all qi are the same value and the distance r10 = r40 and r20 = r30, V10 = V40 and
V20 = V30 so,

V0 = 2V10 + 2V20.

(c) Compute V10: The electric potential at the origin from charge q1, with our choice of V∞, is:

V10 =
kq1

r10

r10 = 4cm - From diagram

V10 =
(8.99 × 109 Nm2

C2 )(1 × 10−6C)

0.04m

= 2.25 × 105 Nm

C

(d) Compute V20:

V20 =
kq2

r20

r20 = 1cm - From diagram

V20 =
(8.99 × 109 Nm2

C2 )(1 × 10−6C)

0.01m

= 8.99 × 105 Nm

C

= 8.99 × 105V

(e) Compute Total Potential:

V0 = 2(2.25 × 105V) + 2(8.99 × 105V)

V0 = 2.25 × 106V
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17.4.2 Electric Potential of a Continuous System of Charge

I’m sure you can see where this is going. If we have a continuous system of charge, we can cut it up into tiny
chucks and calculate its potential directly by integration. Let’s revisit the system whose field you calculated by
integration in lab.

Example 17.18 Calculate the Potential of a Finite Line Charge
Problem: A line charge of length 2L has charge density λ and lies along the x-axis with its center at the origin.
Calculate the electric potential at a point a distance R along the y axis. The potential is zero at infinity.

Solution

(a) Cut the System into Pieces: The system is drawn to the
right. Divide the system into small segments of length ∆x and
center xi. The charge of each segment is qi = λ∆x. The distance
of each segment to the point P a distance R along the axis is

di =
√

R2 + x2
i

The electric potential at P is the sum of the potentials of each
segment

V (R) =
∑

i

kqi

di
=

∑

i

kλ∆x
√

R2 + x2
i

 x

 y

 R

 -L  L

qi

 P

di

xi

∆xi

(b) Convert the Sum into an Integral: Let the segments become infinitely short to convert the sum into an

integral, ∆x → dx, xi → x, and
∑

i

∫ L

−L

V (R) =

∫ L

−L

kλdx√
R2 + x2

Since the integral is even

V (R) = 2

∫ L

0

kλdx√
R2 + x2

(c) Look up the Integral: I looked this one up in my ancient integral table

∫

dx√
R2 + x2

= sinh−1

(

x

R

)

+ C

(d) Use the integral formula:

V (R) = 2

∫ L

0

kλdx√
R2 + x2

= 2kλ(sinh−1

(

x

R

)

)

∣

∣

∣

∣

L

0

V (R) = 2kλ sinh−1

(

L

R

)

since sinh−1(0) = 0.

By symmetry we know the field is in the y direction. We can then calculate the field by taking the derivative
of the potential

V (y) = −dV (y)

dy
ŷ
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Example 17.19 Calculate Field from Potential
Problem: Calculate the electric field along the y axis of a line charge with charge density λ and length 2L
centered at the origin that lies along the y axis.

Solution

The potential calculated above was

V (R) = 2kλ sinh−1

(

L

R

)

but since R is a distance along the y axis, this is equivalent to

V (y) = 2kλ sinh−1

(

L

y

)

Since the potential only depends on y, the electric field along the y axis is

~E = −dV

dy
ŷ = −2kλ

d

dy
sinh−1

(

L

y

)

ŷ

I looked up the derivative d sinh−1(x)/dx = 1/
√

1 + x2, so taking the derivative and using the chain rule,

~E = −2kλ
d

dy
sinh−1

(

L

y

)

ŷ = −2kλ
1

√

1 + (L/y)2

(

− L

y2

)

ŷ

~E =
2kλL

y
√

y2 + L2
ŷ

If we take the limit, L >> y, we get back the electric field of an infinite line charge, so we’re OK.

17.5 Potential in Highly Symmetric Systems

We have been computing the electric field for complicated configurations of charge with Gauss’ Law for some
time. Now, we learn to compute the potential difference from the fields. No additional technique is required
to calculate the potential difference in highly symmetric systems with conductors and dielectrics. The following
points are however helpful to remember:

Only Field Matters: The presence of conductors or dielectrics only matters to the
extent they effect the calculation of the electric field. Once you have a correct electric
field everywhere, ignore the conductors and dielectrics in the potential calculation.

Same Deal Inside a Region: Inside of a region, there are no extra features. Compute
the potential by integrating the field as usual.

Work Region by Region from Point A to Point B: If computing ∆VAB along a
path that crosses regions at points C and D, break the integral up into a sum over an
integral across single regions

∆VAB = ∆VAC + ∆VCD + ∆VDB

Be careful of the sign of potential difference across each region.

Example 17.20 Volume Charge Surrounded by Conductor
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Problem: A volume charge with charge density ρ and radius
a is centered at the origin. The volume charge is surrounded by
an uncharged conductor of inner radius a and outer radius b as
drawn to the right.

(a)Draw the electric field map. Draw any induced
charge densities. Use your own paper.

(b)Compute the electric field everywhere.

(c)Compute the induced charge on the inner surface of
the conductor.

(d)Compute the potential difference between ∞ and the
origin.

 a

 b

 conductor

 volume

 charge

 I

 II

 III

Solution to Part (a)

I chose four lines per total charge of the volume charge. These
lines originate somewhere within the charge, stop on the conduc-
tor, and restart on the outer surface of the conductor.

 I

 II

 III

 +

 +

 +

 +  _

 _

 _

 _

 path of integration

Solution to Part (b)

(a) Region I: The charge enclosed by a Gaussian surface of radius r in region I is

Qenc =
4

3
πr3ρ

The electric field is given by the symmetry specific form of Gauss’ Law

~EI =
Qenc

4πε0r2
r̂ =

4
3πr3ρ

4πε0r2
r̂ =

ρr

3ε0
r̂

(b) Region II: The electric field in the conductor is zero

~EII = 0

(c) Region III: The charge enclosed by a Gaussian surface of radius r in region III is the total charge of the
volume change, since the conductor is uncharged:

Qenc =
4

3
πa3ρ
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The electric field is given by the symmetry specific form of Gauss’ Law

~EIII =
Qenc

4πε0r2
r̂ =

4
3πa3ρ

4πε0r2
r̂

Solution to Part (c)

A Gaussian surface in the conductor must enclose zero charge because the field is zero. Therefore, the charge on
the inner surface of the conductor must be equal and opposite the charge of the volume charge

Qc,in = −4

3
πa3ρ

Solution to Part (d)

The path of integration points opposite the direction of the field, so all the potential differences are positive. The
total potential difference from infinity to zero is

∆V∞0 = |∆VI | + |∆VIII |

where I have used the potential difference across the conductor as zero. The potential difference across region
III is

|∆VIII | =

∣

∣

∣

∣

−
∫ b

∞
~EIII · d~ℓ

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫ b

∞

4
3πa3ρ

4πε0r2
dr

∣

∣

∣

∣

where I used d~ℓ = drr̂ and r̂ · r̂ = 1.

|∆VIII | =

∣

∣

∣

∣

4
3πa3ρ

4πε0r

∣

∣

∣

∣

b

∞

∣

∣

∣

∣

=
4
3πa3ρ

4πε0b

where I have correctly removed the absolute value to yield a positive number. Likewise, the potential difference
across region I is

|∆VI | =

∣

∣

∣

∣

−
∫ 0

a

~EI · d~ℓ

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫ 0

a

ρr

3ε0
dr

∣

∣

∣

∣

|∆VI | =

∣

∣

∣

∣

− ρr2

6ε0

∣

∣

∣

∣

0

a

∣

∣

∣

∣

=
ρa2

6ε0

where once again the absolute value was removed to yield a potential with the correct sign. The total potential
difference is then

∆V∞0 = |∆VI | + |∆VIII | =
4
3πa3ρ

4πε0b
+

ρa2

6ε0

which can be simplified to

∆V∞0 =
a3ρ

3ε0b
+

ρa2

6ε0

17.6 Electric Potential Energy and Motion

From the electric potential, we can calculate the electric potential energy of a charged particle moving in
the field. The total energy of a system of charges is just another kind of energy. It is conserved and it can be
converted into other forms of energy. First let us restate the law of conservation of energy and remind you of the
kinetic energy of a moving particle.

Law of Conservation of Energy: As an isolated system undergoes changes, its total
energy remains the same. This is a statement of the conservation of energy and relates
the initial energy to the final energy

Ei
TOT = Ef

TOT
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Kinetic Energy of a Point Mass: For a non-rotating or point mass, the kinetic energy
is

K =
1

2
mv2

where m is the mass and ~v is the velocity.

The law of conservation of energy applies to all forms of energy. A system of charges brings a new type of energy
to conserve, the electric potential energy. Let me remind you of the connection between potential and potential
energy.

Electric Potential Energy: The electric potential energy, U , of a charge, q0, at some
location ~r0, is the electric potential at that point V (~r0) multiplied by the charge,

U = q0V (~r0)

Change in Electric Potential Energy: The change in electric potential energy ∆VAB

of a point charge q0 when moved from a point A to a point B is

∆VAB = q0∆VAB = UB − UA

where UA = q0VA and UB = q0VB are the electric potential energies of the charge at
points A and B. The increase in potential energy is the work done on the charge by an
external agent or its loss of kinetic energy.

Once the energies of the system are identified, we write a conservation equation which relates the energy of
the system at one time to the energy of the system at another time.

General Conservation of Energy Equation: Energy is conserved between two times,
ti and tf for the initial and final times, so the conservation of energy equation is:

Ki + Ui = Kf + Uf

where K is the kinetic energy and U is the potential energy. If the potential energy
is only electric potential energy and there is only one charge moving q, this can be
rewritten in terms of the electric potential,

Ki + qVi = Kf + qVf

where Vi and Vf are the electric potentials at the initial and final locations of the charge.

Conservation of Energy in Terms of Potential Difference: If a charge, q, moves
from point A with velocity vA to a point B with velocity vB , the conservation of energy,
if we knew the potential at point A, VA, and point B, VB , would be

1

2
mv2

A + qVA =
1

2
mv2

B + qVB

We can rewrite this in terms of the potential difference, ∆VAB = VB − VA, as

1

2
mv2

A =
1

2
mv2

B + q∆VAB

After A Long Time: Potential problems will often ask for the energy or velocity after
a long time or very far from the charge. You need to figure out where the particle will
be after an infinitely long time, and use this location as the final location of the particle.
If a particle is infinitely far away from a charge distribution of finite size whose reference
point for potential energy is infinity, the particle has zero potential energy.

Example 17.21 Compute Change in Velocity from Electric Potential
Problem: A 1µC charge of mass 1g is released at a distance 5cm from another 1µC charge. How fast is it
going after a long time?
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Solution

xcm

ycm

q1
5 10

Trajectory

q2

Definitions

q1 ≡ Charge at origin

q2 ≡ Charge moving

ri = 5cm ≡ Initial separation

rf ≡ Final Separation

V ≡ Electric Potential

vi = 0 ≡ Initial Velocity

vf ≡ Final Velocity

Kx ≡ Kinetic Energy at i and f

Ux ≡ Potential Energy at i and f

m = 1g ≡ mass moving

Strategy: Write conservation of energy equation and solve for vf .
(a) Use Conservation of Energy: Because the electric force is conservative, the total energy when the particle
is released is the same as the total energy after a long time. The total energy is the sum of the electric potential
energy plus the kinetic energy.

Ki + Ui = Kf + Uf

(b) Understand Final State: At a very long time, the positive charge moves infinitely far away from the fixed
positive charge, so rf ⇒ ∞.

(c) Select proper form of KE and PE: The kinetic energy of q2 is K =
1

2
mv2. By definition of electric

potential, U = q2V .
1

2
mv2

i + q2V (ri) =
1

2
mv2

f + q2V (rf )

(d) Select Proper Form of Potential: The electric potential of a point charge at the origin with V (∞) = 0 is

V (r) =
kq1

r

(e) Substitute Initial and Final Conditions: In most problems, some terms of the conservation equation will
simplify because of the initial and final conditions. Because the particle is released at vi = 0, Ki = 0. Since
rf ⇒ ∞, Uf ⇒ 0, therefore

Ui =
kq1q2

ri
=

1

2
mv2

f = Kf

(f) Solve for vf :

vf =

√

2kq1q2

mxii
=

√

2(8.99 × 109 Nm2

C2 )(1µC)2

(0.05m)(0.001kg)
= 19

m

s

Example 17.22 Smashing a Car Using Potential Energy
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Problem: My former Geo Metro (man that car sucked) has
mass ≈ 1000kg. I apply a +1C charge to the car (yes, that
is a lot of charge). I place it against the exam room wall and
let off the brake. Through ingenious use of chrome paint, I
establish a potential difference of 1000V between the walls
which are d = 20m apart.

(a)Label the walls 0V and 1000V so that the car
will accelerate from Wall 1 to Wall 2.

(b)After starting from rest, how much energy is re-
leased when it crashes into Wall 2?

(c)How fast is it going when it hits the wall?

(d)Will I succeed in destroying the car? (1m
s =

2.2mph) Justify your answer.

Wall 1 Wall 2

Metro

Solution to Part(a)

The charge on the car is positive so the electric field created by the charged walls must point from left to right.
Therefore you must do work to move a positive test charge from wall 2 to wall 1, so wall 1 is at a higher potential.
Wall 1 = 1000V . Wall 2 = 0V . We could also reason that a positive charge spontaneously moves to lower
potential so Wall 1 must have higher potential than Wall 2.

Solution to Part(b)

The car’s electric potential energy when it is at Wall 1 is converted into kinetic energy as it travels to Wall 2.
This energy is released as heat and goes into deformation when the car crashes. By definition of electric potential,
|U | = |q∆V | = (1C)(1000V ) = 1000J .

Solution to Part(c)

When it reaches the wall, it has lost 1000J of potential energy, which has been converted into kinetic energy so
−∆U = 1

2mv2, where v is the velocity. Solving for v gives

v =

√

2|∆U |
m

=

√

2(1000J)

1000kg
= 1.41

m

s
.

Solution to Part(d)

No. The car is only going 3mph.
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Chapter 18

Electrostatic Energy

18.1 Electrostatic Energy

Since each charge exerts a force on every other charge, you have to do work to put a system of charge together.
The total energy of a system of charges, ETOT , is the total work you do to put it together. The part of this
energy that is due to the potential energy of the electric fields is called the total electrostatic energy. This energy
is stored in the electric fields.

In mechanics, when a spring was compressed by an external agent doing work against the force of the spring,
we said the spring had potential energy. It is exactly the same situation with electric charge. An external agent
must do work to bring each new charge in from infinity and place it at its location in the system. The total energy
of a system ETOT is equal to the total work W an external agent would have to do to assemble the system from
scratch

ETOT = W

The total energy is divided amongst many forms of energy, kinetic, potential, chemical, thermal, nuclear, etc. For
this class, we will assume the energy is either kinetic K or electric potential energy U ,

ETOT = K + U

The total electric potential energy of a system will be called the total electrostatic energy.

Energy Is Total Work: The total electrostatic energy of a system of stationary charges
is the total work an external agent has to do to assemble it leaving each particle with
zero kinetic energy. To compute the total energy, add the work required to add each
charge.

Sign of the Energy: The energy is positive if you have to do work to put the system
together, if you have to squeeze on it. The energy is negative if the system does work
on you, if you have to hold onto it to keep it from going together.

Visualize Building It: To compute the total energy of a system of charges, imagine
building it up charge by charge by hauling each charge, one at a time, in from infinity
and gluing them in place.

Example 18.1 Reasoning about the Energy of a System of Charge
Problem: Positive and negative 1µC charges are 1cm apart. Is the total electrostatic energy of the system
positive or negative? Justify your answer.

Solution

You can build this system by fixing the + charge at the origin, and then bringing the negative charge in from
infinity. As you bring the − charge in, it is pulled toward the positive charge (Opposites Attract) doing work on
you. Therefore you do negative work on the charge and the energy of the system is negative.

190



18.1. ELECTROSTATIC ENERGY CHAPTER 18. ELECTROSTATIC ENERGY

Example 18.2 Compute Energy of a Collection of Point Charges
Problem: Three 1µC point charges are spaced 10cm apart along the x−axis. Calculate the total electrostatic
energy of the system.

Solution

x(cm)

y(cm)

-10 10

 q1 q2
 q3r12

r13

r23

Definitions

~rij ≡ Vector from i to j

qi ≡ Charges

Wi ≡ Work to place charge i

Strategy: Bring one charge in from infinity at a time. Compute the work done (change in potential energy) as
each charge is brought in. Add it all up.
(a) Write Total Work: We’re going to assemble the system piece by piece and add up the work to place each
new charge. The total electrostatic energy of the system, U , is the total work done to assemble the system which,
is the sum of the work to place the individual charges. It doesn’t matter in what order we place the charges, the
total work will be the same. The total work to assemble the system is the work to place the first charge, W1, plus
the work to place the second charge, W2, in the field of the first charge, plus the work to place the third charge,
W3, in the field of q1 and q2.

U = WT = W1 + W2 + W3

(b) Place First Charge: The work to place the first charge q1 at location ~r1 is zero, W1 = 0, since none of
the other charges are present.
(c) Place Second Charge: Compute the work to place the second charge using the electric potential energy.
The work to place q2 in the electric field of q1 (the only charge placed so far) is the change in potential energy
to move q2 in from infinity with q1 fixed,

W2 = q2∆V1(~r2) = q2

(

kq1

r12

)

where I have used the potential difference between infinity and a point r from a point charge. The distance is
r12 = 10cm by observation. Substitute everything:

W2 =
kq2q1

r12
=

(8.99 × 109 Nm2

C2 )(1µC)(1µC)

0.1m
= 0.09J

(d) Add the Third Charge: The work to place q3 in the electric field of q1 and q2 is the change in potential
energy to move q3 in from infinity with q1 and q2 fixed,

W3 = q3

(

kq1

r13

)

+ q3

(

kq2

r23

)
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The distances are r13 = 10cm and r23 = 20cm by observation.

W3 =
(8.99 × 109 Nm2

C2 )(1µC)(1µC)

0.1m
+

(8.99 × 109 Nm2

C2 )(1µC)(1µC)

0.2m

= 0.09J + 0.045J = 0.135J

(e) Substitute and Solve: Substitute the individual energies into the total energy sum,

U = WT = W1 + W2 + W3

= 0 + 0.09J + 0.135J

U = 0.225J

18.2 Electrostatic Energy Density

So what happens with a continuous system, say two equal and opposite parallel planes of charge? You guessed
it, we chop the system into little bits of size ∆q and build the system piece by piece.
Consider two parallel planes. Each plane has area A and the
separation between the planes is ℓ as shown to the right. We can
build two equal and opposite parallel planes by moving chunks
of charge ∆q from the left plane to the right plane. The first
chunk we move requires zero work since the field is zero. To
move the second chunk we have to do work ∆q∆V where ∆V is
the potential difference due to field produced by the first chunk.
The electric field of equal and opposite parallel planes is σ/ε0.
The charge density is the charge divided by the area, σ = q/A.
Therefore the electric field is E = q/(Aε0). Since the field is
uniform, ∆V = Eℓ = qℓ/ε0A. The total work to assemble a
system with total charge Q is

ETOT =
∑

∆q∆V =
∑

∆q
qℓ

ε0A
=

∫ Q

0

qℓ

ε0A
dq =

Q2ℓ

2ε0A

+σ

∆q

− σ

This energy is stored in the electric field. The field is uniform, so the energy density must be uniform. The energy

density is the energy divided by the volume V = Aℓ between the planes. Let ue be the energy density of the
electric field

ue =
ETOT

V
=

Q2ℓ
2ε0A

Aℓ
=

Q2

2ε0A2
=

σ2

2ε0
=

ε0E
2

2

where I have used E = σ/ε0.

Electrostatic Energy Density: The energy per unit volume, ue, stored in the electric
field is

ue =
1

2
ǫ|E0|2,

where ǫ is the permittivity of the material (ǫ0 for free space, ǫ = κǫ0 for a material
with dielectric constant κ.) and |E0|2 is the modulus of the electric field squared,

|E0|2 = ~E0 · ~E0.

This is rather profound. When we rubbed the golf tube with the oven bag, an electric field was produced
which propagated out into the universe. That field carried energy, so when we rubbed the golf tube we sent a
blast of energy travelling across the universe.

To calculate the total energy in some volume for a uniform field, multiply the energy density by the volume
(if the field is uniform, the energy density is the same at all points in the volume).
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Example 18.3 Energy in One Meter Cube at Earth’s Surface
Problem: How much electrostatic energy is stored in a 1m cube at the Earth’s surface. The electric field at the
Earth’s surface is 150N/C downward.

Solution

A 1m cube is so small compared to the Earth, that the field is approximately uniform in the cube. The energy of

a region of the electric field is the energy density of the field ue = |~E|2ǫ0
2 , multiplied by the volume of the space,

so

U =
| ~E|2ǫ0V

2
=

(150N
C )2(8.85 × 10−12 C2

Nm2 )(1m)3

2
= 9.96 × 10−8J

If the energy density changes with position, we have to integrate, natch.
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Chapter 19

Capacitance

19.1 Definition of Capacitance

19.1.1 Definition of Capacitance

I love capacitance. Up to now, we have been computing things that can only be measured with expensive
equipment that an engineer would probably not have access to in the field. Our hands-on experiments have yielded
approximations to charge and field that are, at best, order of magnitude approximations. A capacitance meter
costs about fifty bucks on-line. With capacitance, we can compute and measure charge, field, and the energy
stored in the field with remarkable precision.

Definition Capacitance: The feature of electrostatic systems that enters into electric
circuits is the capacitance C; if equal and opposite charge ±Q are placed on two
conductors a potential difference ∆V is produced. The capacitance of the system of
conductors is

C = Q/∆V.

Capacitance is defined as the ratio of the charge on one of the conductors to the
potential difference between two conductors carrying equal and opposite charge.

Capacitance Does Not Depend on Charge or Potential Difference: If the restric-
tions below are met, C does not depend on either Q or ∆V , but only on the geometry
of the conductors and dielectrics, their size and shape, dielectric constants, and ε0. Ca-
pacitance is independent of Q and ∆V , if when all excess charge is removed from the
conductors, there is no remaining charge or field in the system. That is, the conductors
are not in the presence of fixed charge or external fields.

Units of Capacitance: The SI unit for capacitance is the farad F . The farad is related
to other units by

1F = 1
C

V
= 1

J

V2
= 1C2/Nm

New Units for Permittivity: In capacitance problems it is often convenient to use
ε0 = 8.85 × 10−12F/m.

Sizes of Capacitance: A conducting marble has a capacitance of 1pF = 1 × 10−12F
with respect to ground. You have a capacitance of about 100pF. Commercial capacitors
often have a capacitance of 1mF = 1000µF = 1 × 10−3F.

A capacitor is an electronic device used primarily for its capacitance. We will work with spherical, cylindrical,
and parallel plate capacitors. A wire or a co-axial cable is a cylindrical capacitor and the capacitance per unit
length of a cable is an important electrical property of the cable. Commercial capacitors however, are all formed
of foils separated by a dielectric, which are all rolled up. They may be approximated as a parallel plate capacitors.
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Capacitance of a Parallel Plate Capacitor: The capacitance of a parallel plate
capacitor formed of two parallel conducting plates with plate area A and plate separation
d is

C =
ǫ0A

d

Capacitance of Isolated Sphere: The capacitance of an isolated conducting sphere,
with respect to ground, is

C = 4πε0R

where R is the radius of the sphere.

Example 19.1 Lab Capacitor Plate Area
Problem: The blue lab capacitors have a capacitance of 1000µF. If they were air-filled parallel plate capacitors
with plate separation, 0.1mm = 1 × 10−4m, how much area would the plates have?

Solution

The capacitance of a parallel plate capacitor is given by

C =
ε0A

d

Solve for the plate area

A =
dC

ε0
=

(1 × 10−4m)(1000 × 10−6F)

8.85 × 10−12 C2

Nm2

A = 1.13 × 104m2

19.1.2 Capacitance and Energy

Finally, the reason I really love capacitance is that it allows one to simply calculate the energy stored in systems
of conductors, which is how I estimated the amount of energy which would be released if all the electrons were
removed from a piece of charcoal on the first day of class.

You charge a two plate capacitor, establish equal and opposite charges on its plates, by using a source of
potential difference, like a battery, to pump positive charge from the negative plate to the positive plate, or more
physically pump negative charge from the positive plate to the negative plate as shown below.

 +  +  +
 _  _  _

 +

 +  +  +
 _  _  _

 _

No charge actually passes between the plates. In the simplest capacitors, the area between the plates is filled
with air and the only way charge can pass between the plates is through a spark. Once a capacitor sparks, it
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is usually shot. Commercial capacitors are rated both by their capacitance and the maximum voltage they can
support, ∆Vmax. The maximum voltage is crucial to the amount of energy a capacitor can store.
A capacitor, when charged, has a positively charged plate separated from a
negatively charged plate. To produce this separated charge an external agent
had to do work, so the capacitor contains energy. We can imagine building
the system of charge by moving chunks of charge from one plate to the other.
This isn’t what happens in practice and I’m not sure how you would actually
do it, but for a thought experiment it is only important that it could be done
in principle. The work to move the ith chunk ∆q is ∆q∆Vi where ∆Vi is the
potential difference the ith chunk is moved through.

∆V∆q

The total work to build up a charge of +Q on one plate and −Q on the other plate is

W =
∑

i

∆q∆Vi =
∑

i

∆q
qi

C
=

∫ Q

0

qdq

C
=

1

2

Q2

C

where I used the definition of capacitance C = Q/∆V . This is one of my favorite formulas.

Energy of a Capacitor: The energy stored in a capacitor is

U =
1

2
Q∆V =

1

2
C∆V 2 =

1

2

Q2

C

where each version of the formula is just a result of applying the definition of capacitance
C = Q/∆V .

Example 19.2 Reasoning About Changes in Capacitor Properties with Voltage
Problem: A variable capacitor is connected to a power supply which maintains the capacitor at a constant
potential difference.

(a)If the capacitance is increased, does the power supply deliver or remove positive charge from the
positive capacitor plate?

(b)Is the energy that is stored in the capacitor increased or decreased?

Solution to Part(a)

Capacitance is the charge stored per potential difference, therefore capacitance multiplied by potential difference
is the charge stored on one capacitor plate. If the capacitance increases, the charge stored on the positive plate
increases, Q = C∆V .

Solution to Part(b)

The energy of a capacitor is given by the formula,

U =
1

2
C(∆V )2.

If the capacitance increases, the energy stored increases.

Example 19.3 Finding Potential Difference Given the Energy of a Capacitor
Problem: A capacitor has a capacitance of 50.0µF and can store 3.6mJ of electrostatic energy when held at a
certain potential difference. What is the potential difference necessary to accomplish this?
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Solution

The energy stored in a capacitor is given by U = 1
2C∆V 2, so the potential difference needed to store a given

amount of energy is

∆V =

√

2U

C
=

√

2(3.6mJ)

50µF
= 12V

I love capacitance because it allows us to calculate the energy of complicated systems without having to
integrate the energy density over all space. A capacitor has charge densities and fields. If you want to calculate
the energy of a system of charge and the charge and field of that system happens to match the charge and field of
a capacitor you can use the energy of the capacitor to calculate the total energy of the system. After all, there is
only charge and field. If an isolated spherical capacitor with respect the ground is charged to a charge Q, all that
Q is at the surface of the sphere forming a surface charge density. The field in the sphere is zero and the field
outside the sphere is Q/4πε0r

2. This is exactly the system of charge and field I calculated the total energy of at
the end of last chapter by integrating the energy density. The capacitance of an isolated sphere is C = 4πε0R,
where R is the radius. If I use the energy of a capacitor, I get a total energy of

U =
1

2

Q2

C
=

1

2

Q2

4πε0R
=

Q2

8πε0R

exactly what I calculated last chapter with a ton less work.

19.1.3 Effect of Dielectrics on Capacitance

We will compute the capacitance of many air-filled capacitors and measure a few with the lab capacitance
meters. All commercial capacitors (except those funky variable capacitors you find in 1930s radios) have the space
between the capacitor plates filled with some dielectric. The dielectric both insulates the two plates and increases
the capacitance over some air-filled capacitor. The dielectric does this because it lowers the electric field, which
lowers the potential difference for the same amount of charge, thus increasing the capacitance.

If a dielectric completely fills the area containing the electric field for a high symmetry system, like a parallel
plate capacitor under the approximation that the plates are infinite parallel planes, the electric field is reduced by
a factor of κ, the dielectric constant, for the same charge Q. The potential difference for a parallel plate capacitor
is Eℓ where ℓ is the plate separation, so the potential difference changes from ∆V0 = E0ℓ to ∆Vκ = E0ℓ/κ =
∆V0/κ. The potential difference is reduced by a factor of κ. The capacitance changes from C0 = Q/∆V0 to
Cκ = Q/∆Vκ = κQ/∆V0 = κC0. The capacitance is increased by a factor of κ.

Capacitance is Increased by a Dielectric : For a capacitor initially filled with air
whose capacitance is C0, the effect of adding a material with a dielectric constant of κ
is to increase the capacitance,

Cκ = κC0

The dielectric must completely fill any area with electric field.

Example 19.4 Reasoning about Charge in a Capacitor
Problem: A capacitor is charged to a potential ∆V0, and then disconnected. No charge leaks out. A dielectric
with constant κ is then inserted.

(a)What is the potential difference after the dielectric is inserted in terms of ∆V0?

(b)What is the capacitance in terms of the original capacitance C0?

(c)What is the charge on one of the plates in terms of the original charge Q0?

(d)What is the new energy in terms of the old energy U0?

Solution to Part(a)

The electric field due to the charge is reduced by a factor of κ when the dielectric is inserted, therefore the
potential difference is reduced by κ, ∆V = ∆V0/κ.
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Solution to Part(b)

The charge remains the same, so the new capacitance is C = Q/∆V = κQ/∆V0 = κC0. The capacitance is
increased by a factor of κ.

Solution to Part(c)

The charge is unchanged so Q = C0∆V0 = Q0.

Solution to Part(d)

The energy stored in a capacitor is U = 1
2Q∆V = 1

2Q∆V0/κ = U0/κ.

Example 19.5 Capacitance Change as Dielectric Inserted
Problem: An air-filled capacitor carries |100µC| of charge on each plate. This produces a potential difference
of 1.5V between the capacitor plates.

(a)What is the capacitance of the capacitor?

(b)If a dielectric with dielectric constant κ = 4 fills the air-space between the capacitor, what is the
new capacitance?

(c)What is the potential difference with the dielectric in place, if the charge on the plates is the same?

Solution to Part(a)

By definition of capacitance, C = Q/∆V = (100µC)/(1.5V) = 67µF.

Solution to Part(b)

The dielectric increases the capacitance by a factor of κ, so the new capacitance is Cκ = κC = (4)(67µF) =
268µF

Solution to Part(c)

Again by definition of capacitance, ∆Vκ = Q/C = (100µC)/268µF = 0.38V. We could have also used ∆V0/κ.

19.2 Capacitance from Electrostatics

19.2.1 Computing the Capacitance of a Two Conductor System

Many of you probably think of capacitance as a property of small devices you found as you tore apart your
dad’s hand-built stereo (hold it, that was me). Capacitance is a property of any system of conductors. It depends
only on the geometry or shape of the conductors. Capacitance is measured between two conductors or between
one conductor and the ground (which is as we’ve argued before, simply a large conductor). To compute the
capacitance of a two conductor system, we follow a fixed process:

• Start with no net charge in the system.

• Add a charge +Q to one of the conductors and −Q to the other. Capacitance does not depend on the
total charge of the system, so this arbitrary charge must cancel out of the capacitance.

• Compute the electric field, usually using Gauss’ law.

• Compute the potential difference ∆V between the two conductors.

• Apply the definition of capacitance C = Q/|∆V |.
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• Report a POSITIVE capacitance.

The following examples illustrate the two conductor case. The one conductor and ground case is covered later.

Example 19.6 Spherical Symmetry Capacitance
Problem: A spherical capacitor is formed by an inner core,
conductor 1, with radius r1 = 5cm and an outer shell, con-
ductor 3, with inner radius r4 = 20cm. Between the inner
core and the outer shell is a conducting shell, conductor 2, of
inner radius r2 = 7.5cm and outer radius r3 = 17.5cm. A
charge Q is placed on the inner core and −Q on the outer
shell.

(a)What is the electric field in region I? Report a
symbolic value.

(b)What is the electric field in region II? Report a
symbolic value.

(c)What is the electric field in region III? Report
a symbolic value.

(d)What is the potential difference between con-
ductor 1 and conductor 2? Report a symbolic
value.

(e)What is the potential difference between con-
ductor 2 and conductor 3? Report a symbolic
value.

(f)What is the capacitance between conductor 1
and conductor 3? Report both the symbolic and
numeric values.

Air

Air

Conductor 2

I

II

III

Conductor 3

Conductor
 1

r1

r2

r3

r4

 Conductor

 Air

 Air

I

II

III

 + -
 +

 +  +

 -

 -  -

 Conductor

 +

 + +

 +

 -

 -  -

 -

Cond.

Definitions

Q ≡ Charge on conductor

~Ei ≡ Electric Field in Region i

∆Vi ≡ Potential Difference Across Region i

C ≡ Capacitance

Strategy: Place ±Q charge on the inner and outer conductor. Compute the field using Gauss’ Law, correcting
for the presence of the region II conductor. Integrate the field to get the potential difference. Apply the definition
of capacitance.

Solution to Part (a)

(a) Draw a Good Diagram: Select four field lines going out for the charge Q on the central conductor, so
region I has four field lines. All these lines end on the conductor in region II and begin again on the outer surface
of the conductor. Region III has four field lines since it encloses Q net charge.
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(b) Compute the Electric Field: The charge enclosed in region I is Q, so using Gauss’ Law in spherical
coordinates

~EI =
Q

4πε0r2
r̂.

Solution to Part (b)

In region II, the field is zero because it is in a conductor,

~EII = 0.

Solution to Part (c)

A Gaussian surface in region III encloses a charge Q. The electric field in region III has the same functional form
as that in region I,

~EIII =
Q

4πε0r2
r̂.

Solution to Part (d)

Compute the Potential Difference Between the Inner Conductor and Middle Conductor: By definition
of potential,

|∆VI | =

∣

∣

∣

∣

−
∫ r2

r1

~EI · r̂dr

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫ r2

r1

Q

4πε0r2
dr

∣

∣

∣

∣

|∆VI | =

∣

∣

∣

∣

(

Q

4πε0r

∣

∣

∣

∣

r2

r1

)∣

∣

∣

∣

=

∣

∣

∣

∣

Q

4πε0

(

1

r2
− 1

r1

)∣

∣

∣

∣

Use a positive potential to yield a positive capacitance,

∆VI =
Q

4πε0

(

1

r1
− 1

r2

)

Solution to Part (e)

Compute the Potential Difference Between the Middle Conductor and the Outer Conductor: By
definition of potential,

|∆VIII | =

∣

∣

∣

∣

−
∫ r4

r3

~EIII · r̂dr

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫ r4

r3

Q

4πε0r2
dr

∣

∣

∣

∣

|∆VIII | =

∣

∣

∣

∣

(

Q

4πε0r

∣

∣

∣

∣

r4

r3

)∣

∣

∣

∣

=

∣

∣

∣

∣

Q

4πε0

(

1

r4
− 1

r3

)∣

∣

∣

∣

Select a sign for the potential consistent with the choice for region I.

∆VIII =
Q

4πε0

(

1

r3
− 1

r4

)

Solution to Part (f)

(a) Compute ∆VII : The potential difference across the conductor is zero, ∆VII = 0
(b) Compute Total Potential Difference: Since the field points in the same direction in all regions the
magnitudes of the potential difference add, so ∆V = ∆VI + ∆VII + ∆VIII .

∆V =
Q

4πε0

(

1

r1
− 1

r2

)

+ 0 +
Q

4πε0

(

1

r3
− 1

r4

)

(c) Apply Definition of Capacitance: The capacitance is defined as

C =
Q

∆V
=

Q

Q
4πε0

(

1
r1

− 1
r2

)

+ Q
4πε0

(

1
r3

− 1
r4

)
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C =
4πε0

(

1
r1

− 1
r2

)

+

(

1
r3

− 1
r4

)

C =
4πε0

(

1
5cm − 1

7.5cm

)

+

(

1
17.5cm − 1

20cm

)

C = 15.1pF

Example 19.7 Parallel Plate Capacitor with Dielectric Partially Filling Airspace
Problem: The conducting plates of a parallel plate capacitor each have an area of 2.0m2. They are separated
by 4.0mm of air. A dielectric slab, with constant κ = 2.5 and width 2mm, is placed halfway between the plates.
What is the capacitance of this arrangement?

Solution

 +Q
 -Q

dielectric airair

 _

 _

 _

 +

 +

 +

I II III
x

d1 d2
d3

Definitions

A = 2m2 ≡ Area of Conducting Plate

σ ≡ Charge Density on Conducting Plate

~Ei ≡ Electric Field in Region i

∆V ≡ Potential Difference between Conductors

C ≡ Capacitance

κ = 2.5 ≡ Dielectric Constant

di ≡ Distance across region i

Strategy: Compute the electric field with the dielectric removed, then correct the field for the presence of the
dielectric. Compute the potential difference using the formula for a uniform field, then apply the definition of
capacitance.
(a) Place Charge on the Conductors: Place +Q on the left conductor and −Q on the right conductor. The
area of the conductor is A = 2m2, therefore the charge density on the left conductor is σ = +Q/A and the charge
density on the right conductor is −σ = −Q/A.
(b) Compute the Electric Field: Under the assumption that the plate area is infinite, the electric field of two
equal and oppositely charged planes is

~E0 =
σ

ε0
x̂ = ~EI = ~EIII .

This can be computed either from Gauss’ Law or by superimposing planes. This field is reduced in the dielectric
by a factor of κ = 2.5,

~EII =
σ

κε0
x̂.

(c) Compute the Potential Difference between the Conductors: The potential difference across a region

with uniform field, ~E, is just |∆V | = |E∆x|, where ∆x is the distance across the region. Since all of the fields
point in the same direction, the potential difference between the conductors is

|∆V | = |EId1| + |EIId2| + |EIIId3|,
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where d1 = 1mm = d3 and d2 = 2mm.

|∆V | = |σd1

ε0
| + |σd2

κε0
| + |σd3

ε0

Using σ = Q/A,

|∆V | =
Q

Aε0
(d1 +

d2

κ
+ d3).

(d) Apply Definition of Capacitance: By definition,

C =
Q

∆V
=

Q
Q

Aε0
(d1 + d2

κ + d3)
.

C =
Aε0

d1 + d2

κ + d3

=
(2m2)(8.85 × 10−12 C2

Nm2 )

0.001m + 0.002m
2.5 + 0.001m

C = 6.32 × 10−9F = 6.32nF

Example 19.8 Capacitance of a Co-axial Cable
Problem: I measured the capacitance of a length of co-axial cable. The cable was formed of two co-axial
conductors. The inner conductor was a copper wire with outer radius a. The outer conductor was foil surrounded
by a mesh shield and has inner radius b. Let L be the length of the cable.

(a)Compute the capacitance of an air-filled co-axial cable in terms of a, b, and L and constants.

(b)For the cable I measured, a = 0.4mm, b = 2.2mm, and L = 3.05m. Compute the capacitance if
the cable had an air core.

(c)I measured a capacitance of about 170pF. The dielectric is foamed Teflon. Compute the dielectric
constant of foamed Teflon.

a
b

r

Gaussian
Surface

Path of Integration

shell

wire

foamed Teflon

Definitions

a = 0.4mm ≡ Radius of inner wire

b = 2.2mm ≡ Inner radius of outer conducting shell

EII ≡ Electric Field in region II

L = 3.05m ≡ Length of Cable

ℓ ≡ Length of Gaussian Surface

Q ≡ Arbitrary Charge placed on Conductor

C ≡ Capacitance

r ≡ Radius from axis of system

Strategy: Introduce an arbitrary charge. Use Gauss’ Law to compute the electric field, then apply the definition
of electric potential to a path of integration between the conductors. Apply definition of capacitance.

Solution to Part (a)
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(a) Place Charge on the inner and outer conductor: We will assume the cable is infinitely long to compute
the electric field and potential difference. To compute the capacitance, we first place +Q on the inner wire and
−Q on the outer shell. This creates a charge per unit length on the inner wire of λ = Q/L.
(b) Compute the Electric Field: For cylindrical geometry, Gauss’ law reduces to

E =
Qenclosed

2πε0ℓr

where ℓ is the length of the Gaussian cylinder. In region II, which is the only region where we need the field, the
total charge enclosed in a Gaussian cylinder of length ℓ is λℓ = Qℓ/L. So the electric field in region II if it were
filled with air is

EII =
Qℓ/L

2πε0ℓr
=

Q

2πε0Lr

(c) Compute the Potential Difference: The potential difference from the outer surface of the wire at radius
a to the inner surface of the outer conductor at radius b is

|∆Vab| =

∣

∣

∣

∣

−
∫ b

a

~EII · r̂dr

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫ b

a

Q

2πε0Lr
dr

∣

∣

∣

∣

|∆Vab| =

∣

∣

∣

∣

− Q

2πε0L

∫ b

a

dr

r

∣

∣

∣

∣

=

∣

∣

∣

∣

− Q

2πε0L
(ln(b) − ln(a))

∣

∣

∣

∣

(d) Apply Definition of Capacitance: By definition, the capacitance of the cable is

C =
Q

|∆Vab|
=

Q
Q

2πε0L (ln(b) − ln(a))

C =
2πε0L

ln(b) − ln(a)
=

2πε0L

ln(b/a)

Solution to Part (b)

Compute the Capacitance of the Cable in Lab: Substitute the values measured for the cable in lab into the
general expression derived above,

C =
2πε0L

ln(b/a)
=

2π(8.85 × 10−12 C2

Nm2 )(3.05m)

ln(2.2mm/0.4mm)

C = 99pF = 9.9 × 10−11F

Solution to Part (c)

Compute the Dielectric Constant of Foamed Teflon: If the dielectric completely fills the region where the
electric field exists, then the dielectric increases the capacitance from C to Cκ, where Cκ is the capacitance with
the dielectric. Therefore the dielectric constant of foamed Teflon is

κ =
Cκ

C
=

170pf

99pF
= 1.71

Example 19.9 Parallel Plate Capacitor with Partially Filled Airspace
Problem: An electric field of 10000N

C is established between the two parallel conductors shown in figure (a)
below. The conductors are flat plates with area Ap = 0.15m2 and separation d = 2cm.
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(a)If the field is established by connecting a power supply between the plates, what potential difference
must the power supply provide?

(b)What is the charge density on the left plate?

(c)Draw the electric field and the location and sign of any bound charge in the system.

A dielectric slab of thickness d/4 with dielectric constant κ = 3 is inserted between the plates without
disturbing the surface charge densities on either plate as shown in figure (b).

(d)Compute the bound charge densities on the left and right surface of the dielectric, σb,l and σb,r.

(e)If the left and right plates are conductors, compute the capacitance of the system. Leave the answer
symbolic, do not compute a number.

 d

 (a)

 d/4

 (b)σ−σ+ σb,rσb,l σ−σ+

Solution to Part(a)

For a uniform field, the potential difference, ∆V , is related to the electric field, ~E, by

|∆V | = |Ed| = (10000
N

C
)(0.02m) = 200V

where d is the separation of the plates.

Solution to Part(b)

The magnitude of the electric field of two equal and opposite planes of charge is

E =
σ

ε0

Therefore the charge density on the left plate is

σ = ε0E = (8.85 × 10−12 C2

Nm2
)(10000

N

C
) = 8.85 × 10−8 C

m2

Solution to Part(c)
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The electric field outside of the dielectric is unchanged. The
dielectric reduces the field in its interior by a factor of κ to 2
lines. Draw + where lines begin − where lines end.

 +

 +

 +

 + _

 _

 _

 _

 I  II  III

x
σ−σ+

Solution to Part(d)

The system is divided into regions in the previous step and a cylindrical Gaussian surface with end area A is
drawn. The electric field for the three regions are

~EI = ~EIII =
σ

ε0
x̂ ~EIII =

σ

κε0
x̂

Apply Gauss’ law to the Gaussian surface drawn. Let ~EI = EI x̂ and ~EII = EII x̂.

EIIA − EIA =
Qenclosed

ε0

The charge enclosed in the surface is the bound charge at the left side of the dielectric,

Qenclosed = σb,lA

Substitute everything into Gauss’ law
σ

κε0
A − σ

ε0
A =

σb,lA

ε0

Cancel everything
σ

κ
− σ = σb,l

By conservation of charge,

σb,r = −σb,l = σ − σ

κ

Solution to Part(e)

If the dielectric has thickness d/4 then the distance across region I and III is d−d/4
2 = 3d

8 . The potential difference
between the two plates is the sum of the potential differences across the regions. The potential difference across
the single region is, because of the uniform field,

∆VI = EI
3d

8
=

3dσ

8ε0
= ∆VIII

∆VII = EII
d

4
=

dσ

4κε0

Therefore the total potential difference is

∆V = ∆VI + ∆VII + ∆VIII =
3dσ

8ε0
+

dσ

4κε0
+

3dσ

8ε0
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The total charge, Q, on the plates is the plate area Ap multiplied by the charge density, Q = σAp. Apply the
definition of capacitance,

C =
σAp

3dσ
8ε0

+ dσ
4κε0

+ 3dσ
8ε0

C =
ε0Ap

d

1
3
4 + 1

4κ

19.2.2 Calculating the Capacitance of One Conductor and Ground

To compute the capacitance of one conductor and ground:

• Start with no net charge in the system.

• Add a charge +Q to the conductor.

• Compute the electric field, usually using Gauss’ law.

• Compute the potential difference ∆V between the conductor and infinity.

• Apply the definition of capacitance C = Q/|∆V |.

• Report a POSITIVE capacitance.

The capacitance of one parallel plate and the ground cannot be calculated, because the electric field of an
infinite plane does not decay with distance, therefore the potential difference between an isolated infinite plane
and infinity is infinite( four ∞s in one sentence, a new record).

Example 19.10 Compute Capacitance of One Conductor and the Ground
Problem: What is the capacitance of a conducting sphere of radius 1.0m with respect to the ground (that is,
zero potential)?

Solution

+Q

Path of Integration

 +
 +

 +

 +
 +

 +

 +

 +

 I

 II

Definitions

R = 1m ≡ Radius of Sphere

Q ≡ Charge on Sphere

~r ≡ Radius Vector

∆V ≡ Potential difference between sphere and ∞
~l ≡ Path of integration

C ≡ Capacitance of Sphere

Strategy: Place Q charge on the conductor, compute the electric field and integrate from infinity to the
conductor to get the potential difference, and apply the definition of capacitance.
(a) Place Arbitrary Charge +Q on the Conductor: Put a charge, Q, on the conductor.

(b) Compute the Field, ~E: The electric field outside the conducting sphere is the same as that of a point
charge, Q, located at the center.

~E =
Q

4πε0r2
r̂
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(c) Integrate the Field to get ∆V : Integrate the electric field between the conductor and the ground to
get the potential difference between the surface of the conductor and infinity. Draw the path on the diagram.
Integrate the electric field from the zero potential at infinity to the surface of the conductor, r, to obtain the
electric potential. By definition of electric potential

∆V = −
∫

path

~E · d~l

Compute the magnitude, then select the sign to give a positive capacitance. For the path drawn on the diagram
d~l = r̂dr, the limits are R and ∞,

|∆V | =

∣

∣

∣

∣

−
∫ ∞

R

~E · (r̂dr)

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫ ∞

R

(

Q

4πǫ0r2
r̂

)

· (r̂dr)

∣

∣

∣

∣

=

∣

∣

∣

∣

Q

4πǫ0

∫ ∞

R

1

r2
dr

∣

∣

∣

∣

=

∣

∣

∣

∣

Q

4πǫ0

(

− 1

r

)
∣

∣

∣

∣

∞

R

∣

∣

∣

∣

=

∣

∣

∣

∣

Q

4πǫ0R

∣

∣

∣

∣

(d) Use Definition of Capacitance: By definition,

C =
Q

∆V
=

Q

Q/4πε0r
= 4πε0r

The charge Q you introduced had better cancel out or you have made a mistake.
(e) Substitute and Calculate:

C = 4π

(

8.85 × 10−12 C2

Nm2

)

(1.0m) = 1.1 × 10−10F = 0.11nF
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Chapter 20

Current and Resistance

20.1 Current

20.1.1 Current

Since the first day of this class, we have been moving electric charge from place to place. Previously, we have
focused on the effects of moving charge so as to produce a net static charge. Now, we focus on the effects of
moving charge through an electric field, where no net electric charge is produced. Suppose we place a conductor
in an electric field, charge flows until the electric field in the conductor is zero as shown in figure (a) below. The
field is zero because of the induced surface charge. Now, let’s attach a pump and pump the induced charge away
as fast as it is created. Since induced charge is equal and opposite, we can do this by pumping the + induced
charge off the right side of the conductor, through the pump, and onto the left side of the conductor. Since there
is no induced charge, there is an electric field in the conductor and a potential difference across the conductor.
We will call a flow of charge an electric current and a system of conductors and other elements that potentially
allow charge to flow, an electric circuit. A circuit is closed when charge flows and open when there is a barrier to
charge flow.

 +

 +

 +

 +

 +

 +

 +

 +

 _

 _

 _

 _

 _

 _

 _

 _

 Conductor in electric field

 Static charge distribution

 +

 +

 +

 +

 _

 _

 _

 _

 Dynamic Moving Charge

 Pump  +

 Electric Field Non-Zero in Conductor

 observer

 (a)  (b)

Suppose we have someone, an observer, measure how much charge ∆Q flows past some point in the circuit
above in a time ∆t. We define the electric current I = ∆Q/∆t.
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Definition of Current: Current, I, is defined to be the rate at which positive charge,
Q, moves through a given cross-sectional area,

I =
dQ

dt

where t is time. (The derivative is necessary to account for changing currents, whether
in magnitude or direction). If the current is constant, we can write

I =
∆Q

∆t

where a charge ∆Q moves through a cross-section in the time ∆t.

Units for Current: The SI unit for current is the ampere, A. The ampere is related to
other units by

1A = 1
C

s

What does this mean? Figure (a) shows charged particles moving
through space. In this case, the cross-section, labelled A, is a
closed hoop in space. If a lightning bolt went through the center
of a hula-hoop, it is a current through the hoop. Figure (b) shows
charges flowing in a wire. In this case, the natural closed hoop to
use for the current is the cross-section of the wire.

 (a) Charged Particles Traveling through Space

 (b) Charges Moving Through a Wire

 I

 I

 A

 A

Positive Current is the Direction of Positive Charge Flow : Positive charge moving
in a certain direction constitutes a positive current in that direction. Negative charge
moving in the opposite direction also constitutes a positive current in that direction.

 +

 +
 +

 I

 Current to the Right

 I

 Current to the Right

 _

 _

 _

A current may be formed of charge particles moving through space or from charges moving in a wire. If the
same amount of charge moves through a cross-section at the same time, the current is the same. There is one
big difference, the charged particles moving through space have a net charge, and therefore an electric field. The
current in the wire moves against the background of the positive atomic cores and the wire has no net charge,
and no electric field.
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Current Density: Currents flow in wires or in extended regions of space, we can define
a current density j by dividing the current, I, by the area, A, its flowing through,

j =
I

A

If you have the current density, the current is found by multiplying by the cross-sectional
area.

The behavior of a electric circuit changes dramatically if the magnitude or direction of the current is changing
with time.

DC Circuits: Direct Current (DC) circuits are circuits where the current always flows
in the same direction.

The simple circuits we build with batteries and light bulbs in lab are direct current circuits.

Alternating Current Circuits: Alternating Current (AC) changes direction with time.

The current delivered from a wall plug is alternating current, a sine wave with frequency 60s−1.

20.1.2 Circuit Diagrams and Measurement Tools

Most currents we deal with will flow in circuits, where the moving charge is confined to wires and other circuit
elements. To represent these circuits concisely we will use circuit diagrams, cartoons of the circuit. We have
already met circuit symbols for the ground and batteries. Let me introduce the symbol for a light bulb, ammeter,
and voltmeter.

Light Bulbs: The more current that flows through a light-
bulb, the brighter it glows. The circuit symbol for a light
bulb is shown to the right.

Circuit Symbol for Ammeter: An ammeter is an instrument used to measure current.
The symbol for an ammeter is shown below. The instrument will read positive if a
positive current goes in the + terminal and out of the − terminal. In our lab meters,
the COM input is the − terminal. A perfect ammeter behaves as a wire in a circuit.

 +  _

 I

 A

 I

 A  B  B A
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Circuit Symbol for Voltmeter: A voltmeter is an instrument to measure the potential
difference between two points in an electric circuit. If the + side of a voltmeter is
connected to point B in a circuit and the − side to point A, the voltmeter will read
∆VAB . A perfect voltmeter does not draw any current from the circuit and behaves as
a break in the circuit.

 V  +
 _ A  B

 B A

∆VAB

In Activity 12 Series and Parallel Circuits, we will build a simple circuit to light a light bulb with a battery.
The figure below shows how the physical circuit is represented by a circuit diagram.

20.1.3 Potential Difference In Electric Circuits

We have some experience with the effects of relatively small static charges. The Van de Graaff establishes a
charge of a few µC. The shorted “D”-cell battery circuit you built in lab carries a current of about 4A. This
means that 4C passes through any point in the circuit in a second. That is an incredible amount of charge. If
any significant portion of this charge piled up at some point in the circuit as net charge, we would see lightning,
sparks, and our hair would stand on end. We don’t see this, therefore net charge is not accumulating at any point
in the circuit. If charge doesn’t accumulate and charge is conserved, the same current flows through all points of
the circuit.
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The figure to the right shows the same current flowing at all points
in the bulb/battery circuit. The corners of the circuit have been
labelled. Because the potential difference around any closed loop
is zero, a basic law of the universe, we can write the sum of the
potential differences around the circuit.

∆VAB + ∆VBC + ∆VCD + ∆VDA = 0

The potential difference across a perfect conductor is zero even
when it carries a current, therefore ∆VBC = ∆VDA = 0. If we
connected voltmeters, we would find

∆VAB = −∆VCD
 A

 B  C

 D

 I

 I

 I

 I

We have already said that the effect of a battery is to establish, ∆Vbatt, voltage between the terminals of the

battery. Therefore, from A to B, the potential difference is ∆VAB = ∆Vbatt > 0. The potential difference is
positive, so the potential increases across the battery. This is called a potential rise. The reference point for the
potential is any convenient point in the circuit, usually the negative side of the battery. If ∆VAB is positive then
∆VCD is negative. Therefore, the potential decreases from point C to point D. This is called a potential drop.

20.1.4 Power Dissipated/Provided to Electric Circuits

In the circuit above, a current I flows through non-zero potential differences ∆VAB > 0 and ∆VCD < 0. A
charge moving from point A to point B through the battery goes from a point of lower potential to a point of
higher potential. To move a charge, ∆Q, through a potential difference, ∆VAB , an external agent must do work
∆Q∆VAB . The external agent in this case is the battery and it must provide this work for every charge in the
current. If the current is I = ∆Q/∆t, then the battery must provide work, ∆W , per time, ∆t, of

∆W

∆t
=

∆Q∆VAB

∆t
= I∆VAB

Work per unit time is power, P . The analysis above depended only on charge moving through potential difference
and is completely general.

Power Dissipated by a Current: The rate at which energy is dissipated or stored in
an object in a circuit is the product of the current flowing through the object and the
potential different across the object

P = I∆V.

This is also the expression for the power provided by the batteries and capacitors in a
circuit.

Definition of Power: Power, denoted by the symbol P , is the rate of doing work or
providing energy.

Units of Power: The units of power are Watts and are related to other units by

1W = 1
J

s
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Energy and Power: Power is energy per unit time. If a device provides or consumes
power, P , at a constant rate, then the energy provided or consumed by the device in
time t is

U = Pt

If the power changes with time, P (t), the energy provided becomes

U =

∫

P (t)dt

A battery or capacitor provides energy to a circuit when the current flows from lower to higher potential. A
battery removes energy from the circuit when the current flows from higher to lower potential. When a battery
or capacitor removes energy from the circuit, the energy is stored. We call this charging the battery or capacitor.

 Battery Providing Energy

 I  I

 Battery Removing Energy

The sign of the potential difference, ∆VCD, as the current goes through the light bulb is negative, the light
bulb does negative work on the current, or equivalently, the current does positive work on the light bulb. The
current provides energy to the light bulb that the bulb turns into heat and light. This energy is lost to the
environment and the light bulb is said to dissipate energy. The rate at which the energy is lost is the power. We’ll
be sloppy and talk about power dissipated, but what that will mean is, the rate at which the energy is dissipated.

Conservation of Energy for Circuits: Energy is conserved. The power provided, Pin,
to a circuit must equal the power dissipated by a circuit, Pout, added to the power
stored in the circuit, Pstored,

Pin = Pout + Pstored

Energy may be stored by running a current backward through a battery or using a
capacitor.

20.2 Resistance and Resistivity

20.2.1 Resistance

When an electric current flows in a material, the material resists the flow of current. All materials (except
superconductors) resist the flow of current.

Definition of Resistance: The ratio of the potential difference (∆V ) across a material
to the electric current (I) through that material is defined as the resistance (R) of the
material

R ≡ ∆V

I
.

Important note: In general, this ratio (and therefore the resistance) changes as current
changes.

Units for Resistance: The SI unit for resistance is the ohm Ω. The ohm is related to
other units by

1Ω = 1
V

A
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Resistance Meter: A resistance meter, one of the set-
tings on the lab multimeter, measures resistance by pass-
ing a small current through a circuit and measuring the
voltage. If the resistance of the object changes with cur-
rent, it reads the resistance for the meter current.

 R

Example 20.1 Computing Resistance from its Definition
Problem: You observe that a block of carbon will draw 1µA of current when 6V is applied between points A
and B. What is the resistance of the block between points A and B?

Solution

The resistance is defined as R = ∆V/I = 6V/(1 × 10−6A) = 6 × 106Ω

We can use the definition of resistance in the general expression for power.

Power Dissipated by a Resistive Element: Consider a circuit element with resistance,
R, through which a current (I) flows caused by a potential difference (∆V ) across the
element. Some of the energy of the current is converted into heat. Using the general
definition of power and the definition of resistance gives

P = I∆V = I2R

Example 20.2 Resistance of a Light Bulb
Problem: In the US, house wiring delivers 110V. A standard light bulb consumes 100W of power.

(a)How much current does the light bulb draw?

(b)During operation, what is the light bulb’s resistance?

Solution to Part(a)

The power dissipated by any device is always P = I∆V , so I = P/∆V = 100W/110V = 0.91A.

Solution to Part(b)

A light bulb’s resistance changes as it heats up, so the resistance you measure when it’s cold is different than its
operating resistance, therefore the light bulb does not obey Ohm’s Law. The definition of resistance still applies
though. This light bulb’s resistance at its operating temperature is, by Definition of Resistance, R = ∆V/I =
110V/0.91A = 121Ω

20.2.2 Resistance of Materials

The amount of resistance depends on the shape of the conductor. Wires with larger cross-sections have lower
resistance, dissipate less power, and generate less heat for the same current than narrower wires. A longer cable
has higher resistance than a shorter cable. The intrinsic feature of the material which resists current flow is called
its resistivity ρ. (Yes, we are running out of Greek letters and yes, you can only tell ρ for resistivity from ρ for
volume charge density by context.)
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We can understand resistance in terms of our charge-pumping
model at the beginning of the chapter. Suppose we have a con-
ductor of length ℓ and cross-section A which is part of an electric
circuit. A potential difference, ∆V , is applied across the con-
ductor. If the field is assumed uniform, the electric field in the
conductor is E = ∆V/ℓ. This electric field causes the mobile
charges in the conductor to accelerate. If the mobile charges
have charge, q, then the force on each charge is F = qE and the
acceleration is a = F/m = qE/m. If the charges start from rest,
then there velocity after time t is v = at.

A

 I

∆V

Eventually, the charges must smash into something or the velocity would become infinite. Let the time τ be the

average time the charge has been travelling since its last collision. The average velocity of the charges is

vd = aτ =
qEτ

m
=

q∆V τ

mℓ

and is called the drift velocity. If the density of mobile charges is n, then the current density in the material is
j = qnvd and the total current in the conductor

I = jA = qnvdA =
nq2∆V τA

mℓ

Rearranging gives,
∆V

I
= R =

(

m

nq2τ

)

ℓ

A

where I have used the definition of resistance. The stuff in parenthesis does not depend on the shape of the
conductor. It represents the conductive material’s intrinsic resistance, and is called the resistivity, ρ,

ρ =

(

m

nq2τ

)

So as the number of charge carriers goes up the resistance goes down. As the time between collisions goes up
the resistance goes down. As temperature increases, the atoms of the metal shake around more, and the moving
charges collide more often. Therefore, resistance increases with temperature.

Calculation of Resistance from Resistivity: The intrinsic feature of the material
which resists current flow is called its resistivity, ρ. The cross-sectional area, A, of
the material and the distance, L, through which the current flows also play a role in
determining the resistance of a material. The resistance of a material whose resistivity
is independent of current is related to its geometry by

R = ρ
L

A

L

A

R
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Temperature Dependence of Resistivity : In general, the resistivity will change with
environmental conditions, particularly temperature. It will be a number that must be
looked up in a table or given in the question. If no temperature is specified, the results
will be for 20◦C.

Resistivity

Type Name Resistivity (20◦C) Resistivity (900◦K)
Conductor Copper 1.67 × 10−8Ωm 6.04 × 10−8Ωm

Aluminum 2.65 × 10−8Ωm 10.18 × 10−8Ωm
Silver 1.59 × 10−8Ωm 5.64 × 10−8Ωm

Stainless Steel 72 × 10−8Ωm
Semi-Conductor Silicon 1 × 10−3Ωm

Insulator Cellulose 108 − 1010Ωm
Polypropylene > 1013Ωm

Teflon > 1016Ωm

Example 20.3 Comparing the Resistances of Wires
Problem: Wire A has twice the radius and half the length of wire B; both are made from the same material.
How is the resistance, RA, of wire A related to the resistance, RB , of wire B?

Solution

Let LA be the length of wire A and LB = 2LA the length of wire B. Let rA be the radius of wire A and
rB = rA/2. The resistance of a wire is given in terms of the resistivity, ρ, by R = ρL

A , so the resistance of wire
A is

RA =
ρLA

AA
=

ρ

π

LA

r2
A

RB =
ρLB

AB
=

ρ

π

LB

r2
B

=
ρ

π

2LA

(rA/2)2
= 8

ρ

π

LA

r2
A

RA =
1

8
RB

Example 20.4 Resistance of An Iron Bar
Problem: A rectangular bar of iron has width 1cm and height 1cm. The bar is 3m long. Iron has resistivity
10 × 10−8Ωm. What is the resistance of the bar along the long dimension?

Solution

The resistance is given by

R =
ρL

A
=

(10 × 10−8Ωm)(3m)

(0.01m)2
= 3 × 10−3Ω

where A is the area of the end and L is the length.

20.2.3 But that’s all garbage

A mental model of electrons barrelling through a material under the influence of the electric field and crashing
into stuff is kind of intuitive. The problem is when you go measure anything in the model presented above the
numbers you come up with are Martian. For example, it seems obvious that the value of the charge moving is
q = −e, the charge of the electron. If you make the measurement you find different values for the charge in
different materials, some positive some negative. Likewise, the mass of the object moving does not turn out to
be the mass of the electron. If you make models of how fast the charges should be moving based on the theory
of gases, you’re off by miles.
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Conduction and resistance are intrinsically quantum mechanical phenomena. The mobile electrons travel as
waves through the material. To a first approximation the mobile electrons completely ignore the atoms and
other mobile electrons. They have the energies associated with a single free particle trapped in a box, where the
conductor is the box. Just like filling up atomic orbitals in chemistry, two conduction electrons cannot occupy the
same state, by the Pauli exclusion principle. So as conduction electrons are added to the system, each must be
added to a different state, with ever increasing energy. So what we actually have is a quantum mechanical gas of
Avogadro’s number of electrons pretending each other aren’t there.

The crystal structure of the metal further complicates things. The waves become grouped into energy bands.
Filled bands are insulating. Partially filled bands allow conduction. Since bands are filled in order of energy, only
the highest energy band conducts and is called the conduction band. Sometimes the conduction band is mostly
empty, populated only by charges that are thermally excited from a lower band. Since the conduction band is
mostly empty, the density of charge carriers in low, and the material is a conductor, but a poor conductor or
semi-conductor. Semi-conductors have been very important technically because their conduction properties can
be adjusted by adding impurities. This process is called doping.
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Chapter 21

DC Circuits

21.1 Ohm’s Law

21.1.1 Ohm’s Law

As we saw last chapter, a material’s resistance changes with temperature. It is sometimes the case that this
change is small over the operating range of a device or system. If a device’s resistance over a range of different
currents is constant, the object is said to be ohmic and obeys Ohm’s law. A light bulb is not ohmic because if
you plot the voltage across the light bulb against the current through the light bulb you get a curve like the curve
shown below. In electric circuits, devices where the voltage vs. current curve is a straight line, called resistors,
are common. The voltage-current plot for a resistor is drawn below. Since voltage over current is resistance, light
bulbs have a variable resistance, while resistors have a constant resistance.

 V

 I

 Voltage vs. Current for Light Bulb

 V

 I

 Voltage vs. Current for Resistor

Ohm’s Law: In some cases, the resistance of a material remains constant as the poten-
tial difference or current is changed. In such cases, the material obeys an experimental
relationship called Ohm’s Law

∆V = IR

Resistance Abbreviations: Resistances are often large numbers. We will use the
following abbreviations for large resistances:

1KΩ = 1 × 103Ω kilo-ohms

1MΩ = 1 × 106Ω mega-ohms
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Resistor Circuit Symbol: The symbol which represents
a resistor, which is a circuit device that obeys Ohm’s law,
is shown to the right.

 R

Recognize when Ohm’s Law is valid : Ohm’s Law is an experimental law and is
valid only for materials which have a constant resistance for varying potential differences
across them. If the ratio ∆V/I is not constant for the material in question, the material
is not Ohmic and does not obey Ohm’s Law.

Example 21.1 Ohm’s Law Example
Problem: A 4.0MΩ resistor is connected across a 12V battery.

(a)What is the current through the resistor?

(b)What is the power dissipated by the resistor?

(c)How much heat is dissipated by the resistor in 3s?

Solution to Part(a)

Convert the units on resistance, 4.0MΩ = 4.0 × 106Ω. Apply Ohm’s law,

I =
∆V

R
=

12V

4.0 × 106Ω
= 3 × 10−6A = 3µA

Solution to Part(b)

The power dissipated by an element is always P = I∆V . If we substitute Ohm’s law,

P = I∆V = I2R = (3 × 10−6A)2(4.0 × 106Ω) = 36 × 10−6W

Solution to Part(c)

Since the power is constant, the energy dissipated, U , is Power multiplied by time

U = (36 × 10−6W)(3s) = 1.08 × 10−4J

Example 21.2 Wrench and Car Battery
Problem: While working on your car, you accidentally short your battery with a wrench, which we will ap-
proximate as a 1cm diameter iron cylinder, 20cm long. The battery delivers 600A. The resistivity of iron is
10 × 10−8Ωm. How much heat energy is generated per second?

Solution

The resistance of the wrench is R = ρL
A , where ρ is the resistivity, L = 20cm is the length, and A = πr2 =

π(0.5cm)2 = 7.8 × 10−5m2 giving a resistance of

R =
ρL

A
=

(10 × 10−8Ωm)(0.2m)

7.8 × 10−5m2
= 2.55 × 10−4Ω

The power dissipated by the wrench is given by

P = I2R = (600A)2(2.55 × 10−4Ω) = 91.8W
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Note this is not your biggest problem. The voltage drop across the wrench is

∆Vwrench = IR = (600A)(2.55 × 10−4Ω) = 0.153V

A car battery has potential difference 12V, so 12V−0.153V = 11.85V drops across the internal resistance within
the battery. Therefore the heat energy deposited in the battery per second is

∆V I = (11.85V)(600A) = 7110W

All this energy is heating the sulfuric acid in the battery, which will hurt when it hits you in the face.

21.1.2 Physical Batteries

A perfect battery maintains a potential difference ∆Vbatt across its terminals regardless of how much current
it delivers. The potential difference across a real battery, called the terminal voltage ∆Vterm, decreases as more
current is provided.

Physical Batteries: A real
battery can be modelled as a
perfect battery with potential
difference ∆Vbatt in series with
a resistor whose resistance is
called the internal resistance
and is given the symbol R. A
physical “D”-cell is drawn to
the right.

R

∆Vbatt

∆Vterm

If no current is drawn from the battery, the voltage across the battery is equal the that of the perfect
battery, ∆Vbatt = ∆Vterm. A perfect voltmeter draws no current, so connecting a voltmeter across a battery
measures ∆Vbatt. This does not give you an idea of how what the terminal voltage will be at the operating
current. As current is drawn from the battery, pumped through the battery, the terminal voltage decreases,
∆Vterm = ∆Vbatt − Ir. Once the terminal voltage drops to zero, you are drawing the maximum current the
battery can provide.

21.2 Resistor Networks

Thévenin’s theorem states that any network of resistors and voltage sources between two terminals is equivalent
to a single resistor and single voltage source. In this section we will investigate a network of resistors only; that is,
multiple resistors, but only one voltage source. Although there are techniques for analyzing fairly complex resistor
networks, we will investigate only those that are some combination of series and parallel resistors.

21.2.1 Identifying Series and Parallel Combinations of Resistors

The first skill in analyzing a complex circuit containing more than one resistor it to identify which sets of
resistors are simple series or parallel combinations.
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Definition of Series Combination of Resistors:
Two resistors are in series. If one end of one is
connected to one end of the other, in all cases, the
same current will flow through each. The resistors
at the right are in series.

 a  b

Definition of Parallel Combination of Resistors:
Two resistors are in parallel if both ends of each
are connected together so that both have the same
potential difference for all values of current through
the circuit. The resistors at the right are in parallel.

 a  b

Example 21.3 Reasoning about Parallel Circuits
Problem: A R = 1Ω resistor is in parallel with a R = 2Ω resistor and connected to a 12V battery. Which of
the following is the same for both resistors? Power Dissipated, Potential Difference, Current. Justify.

Solution

The potential difference is the same. Since I = ∆V/R and P = I∆V , the current and the power dissipated
cannot be the same.

Example 21.4 Are Resistors Series/Parallel?
Problem: In the circuit shown at the right, is R1 in parallel, series, or in no simple
relation to R2? How do you know?

R1

R3

R2

Solution

R1 has no simple series/parallel relationship to R2. R1 does not carry the same current as R2, so they are not in
series. R1 and R2 are not connected so that each end of each device is at the same potential, so they aren’t in
parallel.

Example 21.5 Reasoning About Current
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Problem: The circuit shown at the right is composed of identical light bulbs.
Reason, without calculating, the relation between the currents through B1 and
B2.

B1

B2B3

Solution

B1 is in series with the combination B2 and B3. The current through B1 is the same as the TOTAL current
through B2 and B3. Since the bulbs are identical, half the current flows through each bulb, so B2 carries half as
much current as B1.

21.2.2 Reducing Resistor Networks

When a simple series or parallel combination is identified, it can be replaced by an equivalent resistor whose
resistance is calculated using the techniques below. This leaves the circuit with fewer resistors and possibly exposes
more simple series and parallel combinations. The goal is to reduce the complex circuit to a single resistor, whose
resistance is the equivalent resistance of the circuit. With the equivalent resistance, Ohm’s law can be used to
compute the current drawn by the circuit and the power dissipated.

Definition of Equivalent Resistance: The equivalent resistance of a network of resis-
tors is the resistance of a single resistor which could replace the network and draw the
same current with the same potential difference as the network. Since the current and
potential difference are the same, the equivalent resistor would also dissipate the same
amount of power.

Given resistors R1 and R2 connected in series as shown to the right,
the sum of the potential differences across each resistor must be the
same as the total potential difference across both

∆V1 + ∆V2 = ∆Vs

The current through each resistor is the same due to conservation of
charge

I1 = I2 = Is.

Since Rs = ∆Vs/Is, we have a common denominator and

Rs = R1 + R2

R1

R2∆V2

∆V1

I1

I2

∆Vs

Is

Rs

Resistors in Series : Given resistors R1 and R2 connected in series the equivalent
resistance Rs is

Rs = R1 + R2
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Given resistors R1 and R2 connected in parallel, the potential differ-
ence across each resistor must be the same since the ends are con-
nected by a conductor.

∆V1 = ∆V2 = ∆Vp

The sum of the currents through each resistor is the same as that
coming into the parallel network due to conservation of charge.

I1 + I2 = Ip.

In some sense, a parallel network increases the area through which
the current travels, which decreases the resistance. We have Ip =
∆Vp/Rp which means we have common numerators. To add the
currents, we need a common denominator, so we must invert the
expression. Thus we can write the equivalent resistance, Rp,

1

Rp
=

1

R1
+

1

R2

R1
R2

∆V2
∆V1

I1
I2

∆Vp

Ip

Rp

Resistors in Parallel : Given resistors R1 and R2 connected in parallel, the equivalent
resistance, Rp, is

1

Rp
=

1

R1
+

1

R2

Example 21.6 How to Make Light Bulb Dim
Problem: The circuit to the right is composed of identical light
bulbs. What light bulbs, if any, could you unscrew to make B1

glow brighter?
B1

B2

B4

B3

Solution

Unscrewing either B2, B3, or B4 will cause B1 to dim, because the resistance of the combination B2, B3, B4

will be increased.

Example 21.7 Current Through More Bulbs
Problem: A light bulb is connected across a battery and glows. Another light bulb is then connected in series
with the first bulb and the battery. How does the glow of the first light bulb change? (That is, brighter, dimmer,
or no change)? Justify your answer.

Solution

Dimmer. Less current flows through both bulbs because the battery has to push charge through both bulbs in
a row. Put another way, the equivalent resistance of the two bulb circuit is higher than the resistance of the
single bulb circuit because resistance adds in series. Higher equivalent resistance means lower total current and a
dimmer light bulb.

Example 21.8 Reducing a Simple Parallel Combination
Problem: Six 100Ω resistors are connected in parallel and connected across a 6V battery.

c© 2007 John and Gay Stewart, The University of Arkansas 223



21.2. RESISTOR NETWORKS CHAPTER 21. DC CIRCUITS

(a)What is the equivalent resistance of the six resistors?

(b)What is the current through ONE of the resistors?

(c)What is the total power dissipated by the circuit?

Solution to Part(a)

When many resistors with the same resistance are in parallel, the equivalent resistance is the resistance of one
divided by the number of resistors, using the equivalent resistance of a parallel combination

1

Req
=

1

R
+

1

R
+

1

R
+

1

R
+

1

R
+

1

R
=

6

R

Req =
R

6
=

100Ω

6
= 16.7Ω

Solution to Part(b)

Each resistor has a potential difference of 6V , so by Ohm’s Law I = ∆V/R = 6V/100Ω = 0.06A.

Solution to Part(c)

The power dissipated is always P = I∆V , or substituting Ohm’s Law,

P =
∆V

Req
∆V =

(∆V )2

Req
=

(6V )2

16.7Ω
= 2.2W

Finally, let’s look at a circuit which has both series and parallel combinations of resistors.

Example 21.9 Find the Equivalent Resistance of a Network of Resistors
Problem: Resistors R1 and R2 are in parallel. The R1-R2 combination is in parallel with a series combination
of R3 and R4. Compute the equivalent resistance of the combination. The values of the resistors are R1 = 60Ω,
R2 = 120Ω, R3 = 10Ω, and R4 = 10Ω.

Solution

Strategy: Working from the smallest elements, use series and parallel equations to replace them with equivalents
and keep working outward.

(a) Draw the Circuit: Examine the circuit, finding simple
series and parallel combinations of resistors. Use the series
and parallel resistor formulas to compute the equivalent re-
sistance for these combinations. In the figure at the right,
resistors R1 and R2 are in parallel and resistors R3 and R4

are in series.

a

b

R1

R3

R2

R4
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(b) Reduce Series and Parallel Combinations and Redraw:
Working from the individual resistors, reduce parallel and series com-
binations. Redraw the circuit using equivalents for simple parallel and
series combinations. Use the parallel formula on R1 and R2, to com-
pute their equivalent resistance Rp:

1

Rp
=

1

R1
+

1

R2
=

1

60Ω
+

1

120Ω
=

1

40Ω

Rp = 40Ω

Use the series formula to reduce R3 and R4 to their equivalent Rs:

Rs = R3 + R4 = 10Ω + 10Ω = 20Ω

a

b

Rp
Rs

(c) Reduce the Redrawn Circuit: Examine the redrawn
circuit for simple series and parallel combinations and con-
tinue reduction. Use the parallel formula to reduce the parallel
combination Rs and Rp, giving Req:

1

Req
=

1

Rp
+

1

Rs
=

1

40Ω
+

1

20Ω

Req =
40

3
Ω

Don’t get carried away and reduce a part of the circuit which
is not a simple combination. Don’t do more than one step at
a time, or you will make mistakes.

a

b

Req

Example 21.10 Parallel/Series/Parallel Network
Problem: For the system of resistors to the right, with
∆V0 = 10V and all resistors 100Ω, answer the following,

(a)What is the equivalent resistance of the network
between a and b?

(b)What is I1?

(c)What is I3?

(d)What is ∆V5?

(e)How much power does the circuit consume?

a

b

R1
R3

R2

R4

I1 I3

R5

I0

∆V0
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Strategy: Progressively reduce individual series and parallel combinations, and then redraw. Use Ohm’s Law
and the power dissipated by an Ohmic device to compute the properties of the individual elements.

Solution to Part (a)

(a) First Reduce Parallel Combination: Resistors R1 and R2 are in parallel.
Replace them with their equivalent resistance R12. In this problem, Ii will be
the current through and ∆Vi the voltage across resistor Ri. When a resistor
is an equivalent, i will be the numbers of the resistors that went into the
equivalent. The value of R12 is given by

1

R12
=

1

R1
+

1

R2
=

1

100Ω
+

1

100Ω

R12 = 50Ω

a

b

R3

R4R5

I0

∆V0

R12

(b) Reduce the Two Series Combinations: Resistors R12 and R5 are in
series and resistors add in series, so their equivalent resistance is

R125 = R12 + R5 = 50Ω + 100Ω = 150Ω.

R3 and R4 are also in series, so their equivalent resistance, R34 is

R34 = R3 + R4 = 100Ω + 100Ω = 200Ω

a

b

R125 R34

∆V0

I0

(c) Reduce the Final Parallel Combination: Resistors R125 and R34 are
in parallel and resistors in parallel add, using the formula

1

Req
=

1

R125
+

1

R34
=

1

150Ω
+

1

200Ω
=

7

600Ω

So the equivalent resistance, Req, of the circuit is

Req =
600Ω

7
= 85.7Ω

a

b

∆V0

I0

Req

Solution to Part (b)

(a) Compute the Current in the Parallel Branches: Both R125 and R34 have the full ∆V0 = 10V across
them, so by Ohm’s Law

I125 =
∆V0

R125
=

10V

150Ω
= 0.067A = I5 = I12

(b) Compute the Voltage Drops in the Series Circuits: Since we have the currents in the series circuits, we
can use Ohm’s Law to compute the voltage drops,

∆V12 = I12R12 = (0.067A)(50Ω) = 3.3V
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∆V5 = I5R5 = (0.067A)(100Ω) = 6.7V

∆V3 = ∆V4 = I3R3 = (0.05A)(100Ω) = 5V

(c) Compute the Current Through the R1 or R2: We found the voltage drop across the combination to be
∆V12 = 3.3V , now apply Ohm’s Law to get the currents, which have to be the same since R1 = R2.

I1 =
∆V12

R1
=

3.3V

100Ω
= 0.033A = I2

Solution to Part (c)

As computed above

I34 =
∆V0

R34
=

10V

200Ω
= 0.05A = I3 = I4

Solution to Part (d)

As computed above,
∆V5 = I5R5 = (0.067A)(100Ω) = 6.7V

As is often the case, these circuit reductions have their own pattern of solution which should be follow regardless
of the order in which the circuit properties are asked in the problem.

Solution to Part (e)

By Ohm’s Law, the total current drawn by the circuit is

I0 =
∆V0

Req
=

10V

85.7Ω
= 0.12A

and the total power consumed by the circuit has to be the same as the total power provided,

P0 = ∆V0I0 = (10V )(0.12A) = 1.2W

21.3 Kirchhoff’s Laws

Thus far we have approached the analysis of circuits falling under certain guidelines: multiple resistors in
series, parallel, and single constant voltage source (single battery). We have been able to analyze these circuits
by reducing the network of resistors to a single equivalent resistance, and then expanding the network back to its
original configuration.

We will now set to the task of analyzing circuits with more than one constant voltage source (multiple
batteries). The complication that this brings is that sometimes a battery can come “between” resistors in the
sense that the simple series or parallel relation no longer holds.

21.3.1 Kirchhoff’s Laws

We stated Kirchhoff’s laws last chapter, but we called them conservation of charge and independence of
path. Kirchhoff’s laws allow the calculation of the currents in circuits that are not simple series and parallel
combinations. We could get away without the baggage of additional language, but its traditional. As physicists
though, we could just apply physical laws, all we have to do is find convenient points in the circuit to conserve
charge and convenient paths around the circuit on which to impose independence of path.

Kirchhoff’s Junction Equation: Since charge is conserved and the circuit elements
store negligible charge, the current flowing into a junction must equal the current flowing
out of the junction

∑

Iin =
∑

Iout
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Kirchhoff’s Loop Equation: If there are no significant changing magnetic fields the
integral of the electric potential around any closed loop is zero. Therefore, if the wires
in a system have negligible resistance (support negligible potential differences), the sum
of the potential drops or gains across the devices in a circuit must be zero for any loop:

∑

loop

∆V = 0

Later on, we will find that changing magnetic fields are responsible for the spark you
sometimes see when unplugging a device.

21.3.2 Navigating Multi-Loop Circuits

The hard part of solving a circuit that cannot be reduced to a single equivalent resistor is finding the currents
through EVERY circuit element. The first step in the solution is to figure out what independent currents we need
to solve for. To do this we identify the junctions, branches, and loops of a circuit.

Identify Circuit Junctions: The
junctions of a circuit are those
points at which the current has
more than a single path to continue
its flow. In the circuit to the right,
b and e are junctions since current
coming into them can go out by ei-
ther of two routes.

a b c

def

R1 R3
R2

R4 ∆V2

∆V1

Identify Circuit Branches : Cir-
cuit branches are those portions of
the circuit that are between junc-
tions. In the circuit to the right,
there are three distinct branches
(shown in exploded view): b-c-d-e,
b-e, and b-a-f-e In each branch, the
direction of current flow needs to
be specified. (The direction of cur-
rent can be a full-out guess . . . the
mathematics will tell the tale at the
problem’s end. But once you pick
a direction for current, you have to
use it consistently.) Since current
is conserved, the current through
every element of a branch is the
same.

a b c

def

b b

ee

R1 R2

∆V2

∆V1

R3

R4

I1

I3

I2
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Identify Circuit Loops : A circuit
loop is the path from a point in a
circuit back to itself. In the cir-
cuit to the right, there are three
loops (shown in separated views):
b-c-d-e-b, b-a-f-e-b, and b-c-d-e-f-
a-b. Take note that there are only
two independent loops for this cir-
cuit. (Choosing the direction of the
loop is completely arbitrary.)

a

f

c

d

b

e

a

f

c

d

b

e

1

2

3

b

e

R1 R3
R2

R4 ∆V2
∆V1

R1 R3R2

R4

∆V2
∆V1

21.3.3 Analyzing Kirchhoff’s Law Problems

Let’s continue to work with the system above, with the loop and
current choices made earlier. The simple series combination R1 and
R2 has been replaced by its series equivalent, Rs. The sum of the
potential differences around loop 1 is

∆Vfa + ∆Vab + ∆Vbe + ∆Vef = 0

Likewise the sum of the potential differences around loop 2 is

∆Veb + ∆Vbc + ∆Vcd + ∆Vde = 0

a b c

def

Loop 1 Loop 2

R3

R4 ∆V2

∆V1

Rs

I3

I2I1

We can reason about the sign of these potential differences physically. We already know the magnitudes. The

magnitude of the potential difference across a battery is the battery voltage. The magnitude of the potential
difference across a resistor is given by Ohm’s law, IR. Batteries are easy, if the potential difference goes from
negative to positive, it is positive. If this is reversed, it is negative. For resistors, we know that the current loses
energy as it goes through the resistor, so the potential goes down in the direction the current flows.
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Potential Difference Value Rise/Drop Explanation

f ⇒ a ∆Vfa +∆V1 Rise The potential difference is from negative to positive
across a battery, and is therefore positive.

a ⇒ b ∆Vab −I1Rs Drop The potential goes down as current goes through a
resistor.

b ⇒ e ∆Vbe +I3R4 Rise The potential goes down as current goes through
a resistor, therefore the potential at the upstream
side of a resistor is higher than the potential at the
downstream side.

e ⇒ f ∆Vef 0 The potential difference across a conductor is zero.
b ⇒ c ∆Vbc −I2R3 Drop The potential difference goes down as current goes

through a resistor.
c ⇒ d ∆Vcd +∆V2 Rise The potential difference is from negative to positive

across a battery, and is therefore positive.
d ⇒ e ∆Vde 0 The potential difference across a conductor is zero.
e ⇒ b ∆Veb −I3R4 Drop The potential difference goes down as current goes

through a resistor.

With these observations, we can make a table of sign conventions for the sign of the potential differences.

Sign Convention for Potential Changes in a Kirchhoff Loop: When applying Kirch-
hoff’s Loop rule, there is a distinction between a potential drop and a potential in-
crease(rise). When traversing the loop in the direction chosen for the loop, the sign of
the potential change will either be negative (a potential drop) or positive (a potential
increase) according to the following conventions:

Through battery from negative terminal to positive terminal
Add +∆Vbattery to the loop equation, potential increase.

Through battery from positive terminal to negative terminal
Add −∆Vbattery to the loop equation, potential drop.

Through resistor in the direction of the stated current
Add −IR to the loop equation, potential drop.

Through resistor in the opposite direction of the stated current
Add +IR to the loop equation, potential increase.

First, an example where a shortcut simplifies the math.

Example 21.11 Multi-loop Resistor Problem
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Problem: Consider the circuit to the right with
∆V1 = 18V and ∆V2 = 6V. All resistors are 5Ω.
Use the currents Ii and loops that are drawn.

(a)Write the junction equation for junc-
tion j.

(b)Write the loop equation for Loop 1.

(c)Write the loop equation for Loop 2.

(d)Compute I1, I2, and I3.

(e)What is the total power lost through
the resistors in the circuit?

(f)How much power is provided to the cir-
cuit by the batteries in the circuit?

 j

 Loop 1 Loop2

∆V2∆V1

I1

I3

I2

Solution to Part (a)

Because of conservation of charge and the because surface junctions store minimal charge the current into a
junction is equal to the current out of a junction, so

I1 + I2 = I3

Solution to Part (b)

(a) Label Circuit Nodes: Label the nodes in the circuit. It is
not necessary to reduce the simple series combination from d to
e, Kirchhoff’s laws will take care of it for us. I have drawn the
direction of the currents at the resistors to help write the potential
rise and drop.  j

 Loop 1 Loop2

 a

 b  c

 d e

∆V2
∆V1

I1

I3

I2

I2

I1

(b) Write Loop Equation 1: The potential difference around any closed path is zero, so

∆Vab + ∆Vbj + ∆Vje + ∆Vea = 0

To move from a to b, one must move from the + to − end of battery 1, so ∆Vab = −∆V1. To move from b
to j, we move through a resistor in the direction of current, so the potential decreases, ∆Vbj = −I1R. To move
from j to e, one must move from the + to − end of battery 2, so ∆Vje = −∆V2. Finally, to move from e to a,
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we move through a resistor in the direction of current, so the potential decreases, ∆Vea = −I1R. Substitute to
produce the first loop equation,

−∆V1 − I1R − ∆V2 − I1R = 0

∆V1 + ∆V2 + 2I1R = 0 Loop 1

Solution to Part (c)

The potential difference around loop 2 is also zero, so

∆Vej + ∆Vjc + ∆Vcd + ∆Vde = 0

To move from e to j, one must move from the − to + end of battery 2 increasing the potential, so ∆Vej = +∆V2.
To move from j to c, we move through a wire , ∆Vjc = 0. To move from c to d, one must move through two
resistors opposite the direction of current, so potential increases in each resistor, therefore ∆Vcd = +I2R + I2R.
To move from d to e, we again move through a wire so the potential does not change, ∆Vde = 0. Substitute to
produce the second loop equation,

∆V2 + 0 + 2I2R + 0 = 0

∆V2 + 2I2R = 0 Loop 2

Solution to Part (d)

(a) Look for Simplifications: Before punching the three equations with three unknowns into your calculator,
see if there are simplifications. In this problem, loop 1 only depends on current 1 and loop 2 only depends on
current 2.
(b) Solve for I1: Solve loop equation 1 for I1,

I1 = −∆V1 + ∆V2

2R
= −18V + 6V

2(5Ω)
= −2.4A

(c) Solve for I2: Solve loop equation 2 for I2,

I2 = −∆V2

2R
= − 6V

2(5Ω)
= −0.6A

(d) Solve for I3: Solve the junction equation for I3,

I3 = I1 + I2 = (−2.4A) + (−0.6A) = −3.0A

Solution to Part (e)

The power dissipated by a resistor is P = I∆V = I2R. There are four resistors in the circuit, add the power up,

Plost = I2
1R + I2

1R + I2
2R + I2

2R

Plost = (−2.4A)2(5Ω) + (−2.4A)2(5Ω) + (−0.6A)2(5Ω) + (−0.6A)2(5Ω)

Plost = 61.2W

Solution to Part (f)

We have to be careful as we calculate the power provided by the batteries. If current flows from − to +, the
battery provides I∆V power. If current flows from + to −, the battery is charged by the circuit and removes
I∆V power from the circuit. For the current directions drawn on the figure, both batteries would be charged by
positive current, so

Pbatt = −I1∆V1 − I3∆V3 = −(−2.4A)(18V) − (−3A)(6V) = 61.2W

Energy is conserved and our calculation checks.
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Then, an example where no simplification is possible.

Example 21.12 Determining Network Properties of a Circuit Using Kirchhoff’s Laws
Problem: Consider the circuit at the right with the following
values for the circuit elements: R1 = 2.0Ω, R2 = 4.0Ω,
R3 = 3.0Ω, R4 = 8.0Ω, ∆V1 = 6.0V, and ∆V2 = 9.0V.
Determine the current through each resistor, the potential
difference across each resistor, and the power dissipated or
delivered by each circuit element.

a b c

def

R1 R3R2

R4 ∆V2

∆V1

Solution

a b c

def

R1 R3R2

R4 ∆V2

∆V1

Definitions

R1 = 2.0Ω ≡ Resistance of Resistor 1

R2 = 4.0Ω ≡ Resistance of Resistor 2

R3 = 3.0Ω ≡ Resistance of Resistor 3

R4 = 8.0Ω ≡ Resistance of Resistor 4

V1 = 6.0V ≡ Potential difference of Battery 1

V2 = 9.0V ≡ Potential difference of Battery 2

Rs ≡ Resistance of Series Combination

Ii ≡ Current through resistor i

Vi ≡ Voltage Drop across Resistor i

PRi
≡ Power Dissipated in Resistor i

Strategy: Use Kirchhoff’s Loop and Junction Equations to produce a sufficient set of independent equations to
find the currents.
Section 1 - Draw the Circuit Draw the circuit to be reduced as given (shown above).
Section 2 - Reduce any Simple Series/Parallel Combinations
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(a) If there are simple parallel or series combinations of resistors,
reduce them. R1 and R2 form a series combination:

Rs = R1 + R2 = 6.0Ω

a b c

def

R3

R4

Rs

∆V2

∆V1

Section 3 - Assign Currents

(a) Assign a current, Ii, to each branch of the circuit. Draw a
labelled arrow on the diagram for each current. Be careful not
to introduce currents that are redundant, they complicate the
math. The direction for each of the currents is a guess; if any
of the numerical values for current turn out to be negative, then
we know that the direction represented here is opposite to the
actual current direction. There are three branches, each with a
(possibly) unique current, I1, I2, and I3.

a b c

def

R3

R4

∆V2

∆V1

I1

I3

I2

Rs

Section 4 - Write Junction Equation
(a) A junction is any place in the circuit where more than two wires are connected. Write a junction equation for
each junction until you have a junction equation containing each current. Both junctions, b and e, give the same
junction equations using ΣIin = ΣIout. Using junction b, the junction equation is

I1 + I3 = I2

Section 5 - Draw Loops

c© 2007 John and Gay Stewart, The University of Arkansas 234



21.3. KIRCHHOFF’S LAWS CHAPTER 21. DC CIRCUITS

(a) Draw circuit loops on the drawing. A loop is a path that
returns to its starting point. Draw enough loops so that a loop
goes through each circuit element.Two loops are sufficient to go
through each circuit element. Loop 1 is a − b − e − f − a while
Loop 2 is d − e − b − c − d. a b c

def

R3

R4 ∆V2

∆V1

I1

I3

I2

Rs

Loop 1 Loop 2

Section 6 - Write Loop Equations For each loop, write a loop equation. Make sure each circuit element appears
in at least one loop equation. Furthermore, recall the sign convention for potential differences. Kirchhoff’s Rule
for circuit loops is

∑

loop ∆V = 0.
(a) Write Loop Equation 1: The sum of the potential differences for loop 1 is

∆Vfa + ∆Vab + ∆Vbe + ∆Vef = 0

From f to a, the loop goes through the battery from − to +, so the potential increases ∆Vfa = +∆V1. From a to
b, the current goes through a resistor in the same direction as the loop causing a potential drop, ∆Vab = −I1Rs.
From b to e, the loop goes through the resistor in the opposite direction as the loop, causing a potential rise,
∆Vbe = +I3R4. From f to e, there is no circuit element. The potential difference across a perfect wire is zero,
∆Vef = 0. The loop equation for Loop 1 is

∆V1 − I1Rs + I3R4 = 0

(b) Write Loop Equation 2: The sum of the potential differences for loop 2 is

∆Veb + ∆Vbc + ∆Vcd + ∆Vde = 0

From e to b, the loop goes through a resistor in the same direction as the current, so the potential decreases(drops)
∆Veb = −I3R4. From b to c, the current goes through a resistor in the same direction as the loop, causing a
potential drop, ∆Vab = −I2R3. From c to d, the loop goes through a battery from negative to positive causing a
potential rise, ∆Vbe = +∆V2. From d to e, there is no circuit element. The potential difference across a perfect
wire is zero, ∆Vde = 0.

The loop equation for Loop 2 is
−I3R4 − I2R3 + ∆V2 = 0

Section 7 - Solve the Complete Set of Equations Use mathematical techniques to solve for the unknown
currents. We have three unknown currents and three equations, so we’re in business.
(a) System of Equations to be Solved: Solve the three independent equations:

I1 + I3 = I2 (1)

−I1Rs + I3R4 + ∆V1 = 0 (2)

−I3R4 − I2R3 + ∆V2 = 0 (3)

(b) Eliminate I2: Substitute (1) into (3) to eliminate I2 giving (4):

−I3R4 − (I1 + I3)R3 + ∆V2 = 0 (4)

Group in terms of current:
−I1R3 − (R3 + R4)I3 + ∆V2 = 0 (4′)
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(c) Solve for I1: Solve (2) for I1 in terms of I3 to give (5):

I1 =
I3R4 + ∆V1

Rs
(5)

(d) Substitute: Substitute (5) into (4) giving (6):

−
(

I3R4 + ∆V1

Rs

)

R3 − (R3 + R4)I3 + ∆V2 = 0 (6)

(e) Solve for I3: Solve (6) for I3:

I3 =
∆V2 − ∆V1R3

Rs

R3R4

Rs
+ R3 + R4

=
9V − (6V )(3Ω)

6Ω
(8Ω)(3Ω)

(6Ω) + 3Ω + 8Ω

I3 =
2

5
A

(f) Solve for I1: Solve (2) for I1

I1 =
I3R4 + ∆V1

Rs

=
( 2
5A)(8Ω) + 6V

6Ω
=

16V + 30V

30Ω

I1 =
23

15
A

(g) Solve for I2: Use (1) to compute I2:

I2 = I1 + I3 =
2

5
A +

23

15
A

I2 =
29

15
A

Section 8 - Calculate Potential Differences Across Resistors
(a) Use Ohm’s Law, V = IR, to calculate the potential difference across each resistor.

Using Ohm’s Law:

∆VR3
= I2R3 =

29

5
V

∆VR4
= I3R4 =

16

5
V

∆VRs
= I1Rs =

46

5
V

The potential difference across Rs is actually the potential difference across two resistors, R1 and R2. Since they
are in series, we know that the current is the same through both, I1. Use Ohm’s Law for these two resistors to
obtain

∆VR1
= I1R1 =

46

15
V

∆VR2
= I1R2 =

92

15
V

Section 9 - Check for Consistency
(a) Check that the junction equation and the loop equations work with the numeric answers. I often make
mistakes in Kirchhoff’s Law problems, checking the loops allows me to find the errors and fix them.

symbolic equation numerical equation checks?
I1 + I3 = I2

23
15 + 2

5 = 29
15 yes

−I1Rs + I3R4 + ∆V1 = 0 − 23
15 · 6.0 + 2

5 · 8.0 + 6.0 = 0 yes
−I3R4 − I2R3 + ∆V2 = 0 − 2

5 · 8.0 − 29
15 · 3.0 + 9.0 yes
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Section 10 - Compute Power Dissipated
(a) Use the power law for Ohmic devices, P = IV , to calculate the power lost by each resistor.

P1 = I1∆V1 =

(

23

15
A

)(

46

15
V

)

= 4.7W

P2 = I1∆V2 =

(

23

15
A

)(

92

15
V

)

= 9.4W

P3 = I2∆V3 =

(

29

15
A

)(

29

5
V

)

= 11W

P4 = I3∆V4 =

(

2

5
A

) (

16

5
V

)

= 1.3W
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Chapter 22

Capacitive Circuits

In this chapter, we learn to work with capacitors in electric circuits.

22.1 Capacitor Networks

22.1.1 Combining Capacitors

In the first two chapters, we used capacity or the size of the conductor to reason about how charge is shared
between two conductors in contact. Electrical connection between conducting spheres is the same as electrical
connection in circuits; an electrical connection makes the potential difference between the two connected objects
zero, because the potential difference across a conductor is zero. We now have enough physics to formally analyze
circuits containing capacitors.

Circuit Symbols for Capacitor: The symbol for a capac-
itor in an electric circuit is shown to the right.

C

Let’s consider two parallel plate capacitors as shown below. There are two ways to make a connection to the
battery; the series and the parallel circuit.
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 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 +

 Series Capacitors

 _

 _

 _

 _

 _

 _

 +

 _

 _

 _

 _

 _

 _

 +

 +

 + _

 _

 _

 +

 +

 + _

 _

 _

 Parallel Capacitors

 1  2  3  4

For two identical parallel capacitors, the two-capacitor system simply increases the plate area by a factor of two
(imagine sliding the capacitors together). For parallel plate capacitors, the capacitance is C = ε0A/d, so doubling
the plate area doubles the capacitance. In general, for a parallel combination Cparallel = C1+C2; the capacitance
adds.

In the series combination of two identical capacitors, we have halved the potential difference, since half the
potential difference of the battery is established across each capacitor. In general for a series combination,
1/Cseries = 1/C1 + 1/C2. This expression is derived in the next section.

In the series combination, where does the charge on plates 2 and 3 come from? Charge cannot be moved
from plate 1 to plate 2 or from plate 3 to plate 4 because the airspace between the plates is an insulator. The
negative charge on plate 2 must be taken from plate 3 leaving a positive charge on plate 3.
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What about two of our isolated spherical capacitors connected
together? For example, two of the 12cm globes we use with
the Van de Graaff are connected by a wire. The capacitance of
each isolated globe is computed with respect to the ground. All
grounds may be assumed to be connected. If the globes were
connected to a battery, the circuit to the right would result. If
we imagine connecting the grounds, the isolated spheres are in
parallel and their capacitance adds.

 +

 +

 +

 +

 +

 +

22.1.2 Reducing Capacitive Circuits

Reducing a capacitative circuit involves taking a combination of capacitors and figuring out what capacitor
they could be replaced with and still behave the same.

Definition of Equivalent Capacitance: If a potential difference ∆V is applied to an
arbitrarily complicated system of conductors, a charge Q will be transferred through
the source of potential difference to the capacitors. This is the same electrical behavior
of a single “equivalent” capacitor with capacitance Ceq = Q/∆V . The equivalent
capacitance is the capacitance of a single capacitor that could replace a network of
capacitors and yield the same electrical properties.

The strategy is to locate series and parallel combinations in the circuit and replace them with their equivalent
capacitors using the formulas which follow; redraw the circuit, and keep doing it until only one capacitor is left.
The capacitance of the capacitor is the equivalent capacitance of the circuit.
Capacitors C1 and C2 are connected in parallel (as in the figure
to the right). In effect, the area of the capacitor plates has been
increased which increases the capacitance. The potential drop
across each capacitor is the same (definition of parallel)

∆V1 = ∆V2 = ∆VR.

where ∆VR is the voltage applied across the equivalent capaci-
tance. The total charge is shared between the capacitors

Q1 + Q2 = QR.

Since CR = QR/∆VR and we have a common denominator, we
can simply write the equivalent capacitance, CR,

CR = C1 + C2,

which is larger than either of the capacitors alone.

Q1
Q2

QR

CR

C2C1 ∆V2∆V1

∆VR

Capacitors in Parallel: The equivalent capacitance of two capacitors C1 and C2

connected in parallel is
CR = C1 + C2,
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Now, we need to handle the series case. Capacitors C1 and C2

are connected in series (as in the figure to the right). The sum
of the potential drops across each capacitor must be the same as
the total drop across both

∆V1 + ∆V2 = ∆VR.

The potential drop across each capacitor can be found from the
definition of capacitance.

∆V1 =
Q1

C1
∆V2 =

Q2

C2
∆VR =

QR

CR

Substituting yields
Q1

C1
+

Q2

C2
=

QR

CR

The charge on each plate is the same (in magnitude) due to
conservation of charge

Q1 = Q2 = QR.

Cancelling the Qis gives the equivalent capacitance, CR,

1

CR
=

1

C1
+

1

C2
,

which is always less than either of the capacitors alone.

Q1

Q2

QR

CR

C2

C1

∆V2

∆V1

∆VR

Capacitors in Series: The equivalent capacitance of C1 and C2 connected in series is

1

CR
=

1

C1
+

1

C2
,

Example 22.1 Find the Equivalent Capacitance and Circuit Properties of a Network of
Capacitors
Problem: Three capacitors comprise a network, as shown
at the right. Two capacitors, C1 = 12nF and C2 = 6.0nF,
are connected in series. These are then connected in parallel
with another capacitor, C3 = 3.0nF, to complete the network
of capacitors. A potential difference of Va − Vb = 12V is
established from a to b. Find the equivalent capacitance, the
potential difference, energy, and charge of each capacitor and
sub-network.

a

b

C1

C2

C3

Solution
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a

b

12V
C1

C2

C3

Definitions

Qi ≡ Charge on one plate of Capacitor i

Ci ≡ Capacitance of Capacitor i

∆Vi ≡ Potential Difference across Capacitor i

∆V0 = 12V ≡ Applied Voltage

∆Vs ≡ Voltage Across Series Combination

Cp ≡ Equivalent Capacitance

Cs ≡ Equivalent Series Capacitance

Ui ≡ Energy Stored in i

Strategy: Working from the smallest elements, use series and parallel equations to replace them with equivalents
and keep working outward. Then apply the definition of capacitance to each sub-network to compute the potential
difference and charge of each element.

(a) Working from the individual capacitors, reduce parallel and series
combinations. Redraw the circuit using equivalents for simple parallel
and series combinations. Use the formula for capacitors in series on
C1 and C2:

1

Cs
=

1

C1
+

1

C2

=
C1 + C2

C1C2

Cs =
C1C2

C1 + C2

Cs =

(

12 × 10−9F
) (

6.0 × 10−9F
)

12 × 10−9F + 6.0 × 10−9F
= 4.0 × 10−9F

Cs = 4.0nF

Redraw the circuit.

a

b

C3Cs

(b) Examine the redrawn circuit for simple series and parallel combi-
nations and continue reduction. Use parallel capacitor formula on Cs

and C3

Cp = Cs + C3

Cp = 4.0 × 10−9F + 3.0 × 10−9F

Cp = 7.0nF

Don’t get carried away and reduce a part of the circuit which is not a
simple combination. Don’t do more than one step at a time, you will
make mistakes.

a

b

Cp
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(c) Begin with the equivalent circuit, and apply the definition of ca-
pacitance. We know that the potential difference across the equivalent
capacitor is ∆Vp = ∆V0 = 12V. The charge on the equivalent capac-
itor is

Qp = Cp∆Vp =
(

7.0 × 10−9F
)

(12V) = 84 × 10−9C

Qp = 84nC

a

b

12V

Cp

+Qp

−Qp

(d) Now the network is the parallel combination of Cs and C3. The
potential difference across each is the same since they are in parallel,
∆Vs = ∆V3 = 12V. Use definition of capacitance to compute the
charge on one plate of C3 and on the outermost plate of the series
combination.

Qs = Cs∆Vs =
(

4.0 × 10−9F
)

(12V) = 48nC

Q3 = C3∆V3 =
(

3.0 × 10−9F
)

(12V) = 36nC

a

b

12V +Q3

−Q3

C3Cs

+Qs

−Qs

(e) For the series combination of C1 and C2, the charge on
each is the same as the equivalent capacitor,

Q1 = Q2 = Qs = 48nC.

The potential differences across each can be determined from
the definition of capacitance

∆V1 = Q1/C1 = 48 × 10−9C/12 × 10−9F

∆V1 = 4.0V

∆V2 = Q2/C2 = 48 × 10−9C/6.0 × 10−9F

∆V2 = 8.0V

a

b

12V

∆V2

∆V1C1

C2

C3

+Q3

−Q3

+Qs

−Qs

+Qs

−Qs

(f) Once the voltage and charge on each capacitor in the network is known we can determine the energy stored
in each one. Use the energy stored in a capacitor, U = 1

2Q∆V to compute the energy in each capacitor,

U1 =
1

2
Q1∆V1 =

1

2
(48 × 10−9C)(4.0V) = 96nJ
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U2 =
1

2
Q2∆V2 =

1

2
(48 × 10−9C)(8.0V) = 192nJ

U3 =
1

2
Q3∆V3 =

1

2
(36 × 10−9C)(12V) = 216nJ

Once the equivalent capacitance is found, it can be used to find the total energy stored in a circuit and the
total charge delivered by the battery. You can work backward to find the charge and potential difference of each
of the individual capacitors.

Example 22.2 Charge Stored in an Equivalent Capacitance
Problem: Two 12pF capacitors are connected in parallel. The combination is in series with a 36pF capacitor
and are connected to a 12V battery. How much negative charge does the negative terminal of the battery provide?

Solution

Capacitors add in parallel, so the equivalent capacitance of the parallel combination is Cparallel = 12pF+12pF =
24pF. This parallel combination is in series with the 36pF capacitor. Using the series formula for capacitance,
the equivalent capacitance of the circuit is

1

Ceq
=

1

36pF
+

1

24pF
=

5

72pF

Therefore the equivalent capacitance is Ceq = 14.4pF. By definition of capacitance,

Q = Ceq∆V = (14.4pF)(12V) = 1.72 × 10−10C = 0.2nC
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Chapter 23

RC Circuits

23.1 Reasoning About RC Circuits

The next three sections consider circuits involving both capacitors and resistors.

23.1.1 General Behavior of RC Circuits

An RC circuit is a circuit composed of resistors, capacitors, and sometimes batteries. When an RC circuit is
initially connected to a battery, current flows, and the capacitors begin to charge. In lecture, I charged a capacitor
by connecting it directly across the terminals of a battery. The battery pumped charge from one plate of the
capacitor to the other until the potential difference across the capacitor was the same as the potential difference
across the battery. Nothing happens instantaneously (except maybe EPR). The battery cannot transfer charge to
the capacitor in zero time. Furthermore, as charge starts to build up on the capacitor plates, a potential difference
develops between the plates, and it becomes harder to push more charge into the capacitor, so the rate of charging
slows. If a resistor were connected in series with the capacitor and battery, a lower current would flow and it
would take longer to charge the capacitor. If the capacitor had larger capacitance, it would take more charge to
develop the battery potential difference, and therefore longer to charge. The rate of charging or discharging is
captured by a characteristic time, called the time constant τ , to complete about 1/3 of the operation.

If an RC circuit starts out with capacitors uncharged and is connected to a battery causing the capacitors
to charge, the circuit is said to charge. We will call such a circuit a charging RC circuit. If only resistors and
capacitors are in the circuit and the capacitors start out charged when the circuit is connected and lose their
charge by passing current through the resistors, the circuit is said to discharge. We will call such a circuit a
discharging RC circuit.

23.1.2 Short and Long Time Behavior of RC Circuits

Kirchhoff’s laws apply to RC circuits (and to any other kind of circuit). To understand an RC circuit, we need
to know how the capacitors affect the potential differences and currents in the circuit. At all times, the potential
difference across a capacitor is by definition

∆VC =
Q

C

where Q is the charge on one plate of the capacitor and C is the capacitance. The current “through” the capacitor
is always

I = ±dQ

dt

No current actually goes through the capacitor, since charge cannot pass directly from plate to plate. For a
charging capacitor, equal amounts of negative charge flow away from the positive plate and flow to the negative
plate, making it appear that current is passing directly through the capacitor. Discharging capacitors are discussed
later in the chapter.
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−
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−
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If the capacitor is uncharged, the potential difference across the capacitor is

∆VC =
Q

C
=

0

C
= 0

and it behaves as a wire, an element with no potential difference, in a circuit.

Uncharged Capacitor Behavior: A fully uncharged capacitor has zero potential dif-
ference across the capacitor plates.

If a capacitor is fully charged, it can accept no more charge, and zero current passes through it. The capacitor
behaves as an open circuit.

Fully Charged Capacitor Behavior: The current through a fully charged capacitor is
zero.

Example 23.1 Long and Short Time Behavior of a Charging RC Circuit
Problem: In the circuit to the right, R1 = 1000Ω, R2 =
1000Ω, C1 = 1000µF, C2 = 2000µF, and ∆V0 = 10V.
Initially, all capacitors are uncharged.

(a)What are the currents and voltage drops across
all components immediately after S1 is closed?

(b)What are the currents and voltage drops across
all components after a long time?

∆V0

C1

C2

R1

R2

S1

Solution to Part(a)

Immediately after S1 closes, the capacitors offer no resistance to the flow of current and so the potential difference
across the capacitors is zero, therefore ∆VC1

= 0 and ∆VC2
= 0. Because it is in parallel with a capacitor,

∆VR2
= 0. Then by Kirchhoff’s Loop Equation, ∆V0 = ∆VR1

= 10V. The currents in the circuit are found by
Ohm’s Law, I1 = ∆V1/R1 = 10mA. All this current flows through C2 because at the time switch S1 is closed,
it presents zero resistance while R2 has finite resistance, so IR2

= 0 and IC2
= I1. This current must also flow

through C1, so IC1
= I1.

Solution to Part(b)
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After a long time, C1 becomes fully charged and blocks all current; the current in all elements of the circuit
becomes zero. By Ohm’s Law, if zero current is flowing, ∆VR1

= ∆VR2
= 0. This implies ∆VC2

= 0. By
Kirchhoff’s Loop Equation, this means ∆VC1

= ∆V0 = 10V.

Example 23.2 Analyze Long Time Behavior of a Charging RC Circuit
Problem: The RC circuit shown below has circuit elements of the following values: ∆V = 12V, R1 = 3.0MΩ,
R2 = 6.0MΩ, and C = 3.0µF. When answering the following questions, assume that the circuit has been closed
for a long time. What is the current through each resistor? What is the potential difference across each resistor?
How much charge is stored on each plate of the capacitor?

Solution

∆V

R1

R2

I1

I2C

Definitions

∆V = 12V ≡ Potential difference between battery terminals

R1 = 3.0MΩ ≡ Resistance of first resistor

R2 = 6.0MΩ ≡ Resistance of second resistor

C = 3.0µF ≡ Capacitance of capacitor

I1 ≡ Current through first resistor

I2 ≡ Current through second resistor

∆V1 ≡ Potential difference across first resistor

∆V2 ≡ Potential difference across second resistor

∆VC ≡ Potential difference across capacitor

Strategy: Use the fact that at long times, capacitors do not pass any current, analyze the resulting DC Circuit,
and use the voltage drops to get the capacitor voltage, and the definition of capacitance to get the charge.

(a) Redraw the circuit leaving connection points for the capaci-
tors, but exclude the capacitors. Since at long times the capacitors
draw no current, they do not contribute to the circuit properties.
The circuit given in the sample problem is simplified in the long-
time limit to be without the capacitor, leaving the two resistors
in series with the battery.

∆V

R1

R2

I1

I2
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(b) The resulting circuit is a simple DC circuit and the currents
can be solved for using techniques for DC circuits. The two re-
sistors in series can be reduced to a single equivalent resistor,
Rs = 9.0MΩ. The potential drop across this resistor is the same
as that between the terminals of the battery. Using Ohm’s Law
we find the current through the equivalent resistor

I = ∆V/Rs = 12V/
(

9.0 × 106Ω
)

=
4

3
× 10−6A

which is the current through both real resistors since they are in
seriesI1 = I2 = I.

∆V Rs
I

(c) We can use Ohm’s Law, ∆V = IR, to find the potential
difference across each resistor.

∆V1 = I1R1 =

(

4

3
× 10−6A

)

·
(

3.0 × 106Ω
)

= 4.0V

∆V2 = I2R2 =

(

4

3
× 10−6A

)

·
(

6.0 × 106Ω
)

= 8.0V

∆V

R1

R2

I

(d) Compute Voltage Drop Across Capacitor: Use the network properties (found in the previous section) to
calculate the voltage drop between the points where the capacitor was connected before you redrew the circuit.
This gives the potential difference across the capacitor. The capacitor is in parallel with R2, so they have the
same potential drop

∆VC = ∆V2 = 8.0V

(e) Compute the Charge: Use the Definition of Capacitance to compute the charge on the capacitor. By
definition of capacitance,

QC = C∆VC =
(

3.0 × 10−6F
)

· (8.0V) = 24µC

Example 23.3 Analyze Short Time Behavior of a Charging RC Circuit
Problem: The RC circuit shown below has circuit elements of the following values: ∆V = 12V, R1 = 3.0MΩ,
R2 = 6.0MΩ, and C = 3.0µF. When answering the following questions, assume that the circuit has just been
closed (analysis in the short-time limit). What is the current through each resistor? What is the potential
difference across each resistor?

Solution
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∆V

R1

R2

I1

I2C

Definitions

∆V = 12V ≡ Potential difference between battery terminals

R1 = 3.0MΩ ≡ Resistance of first resistor

R2 = 6.0MΩ ≡ Resistance of second resistor

C = 3.0µF ≡ Capacitance of capacitor

I1 ≡ Current through first resistor

I2 ≡ Current through second resistor

∆V1 ≡ Potential difference across first resistor

∆V2 ≡ Potential difference across second resistor

∆VC ≡ Potential difference across capacitor

Strategy: Use the fact that at short times, the capacitors do not resist the current. Analyze the resulting DC
circuit.

(a) Redraw the circuit replacing the capacitors with wires. Since
the wire has less resistance than the resistor it is in parallel with,
R2, the current flows through the wire instead of R2.

I2 ≈ 0A

∆V2 ≈ 0V

Since the capacitor is in parallel with R2, they have the same
potential difference across the terminals

∆VC = ∆V2 ≈ 0V

∆V

R1

R2

I1

I2

(b) Solve the DC Circuit: The resulting circuit is a simple DC circuit and the currents can be solved for using
techniques for DC circuits. We can use Ohm’s Law, ∆V = IR, to find the current through R1. Since R1 is
the only circuit element across the battery, the potential drop across it is the same as that across the battery,
∆V = ∆V1.

I1 = ∆V1/R1 = 12V/
(

3.0 × 106Ω
)

= 4.0µA

23.2 RC Circuits

23.2.1 General Behavior of RC Circuits

Both charging and discharging RC circuits have exponential time dependencies. The rate of change of any
factor in the circuit is controlled by an exponential factor e−

t
τ where t is the time and τ is the time constant. All

circuit quantities, charge, current, and potential difference change with this time dependence. The number e is
not the electric charge, it is the base of the natural logarithm, ln(e) = 1. For quantities which decrease with time,
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the quantity decays to 1/e ≈ 1/2.72 ≈ 1/3 of its initial value in one time constant. Quantities which increase
with time reach 1 − 1

e ≈ 2
3 their final value in one time constant.

Time Constant, τ : The time constant of an RC circuit is τ = RC, where R is the total
resistance the capacitor charges or discharges through and C is the total capacitance.

Base of the Natural Logarithm: The number e is the base of the natural logarithm.
To a few decimal places e = 2.7182818. e is a constant that is programmed into some
TI calculators, or you can use the function e1 = e.

Example 23.4 Approximate Time Constant Solution
Problem: A charged capacitor discharges through a light bulb. After 10s, the bulb dims to one-third its original
brightness. Without calculation, what approximately is the time constant? Justify your answer.

Solution

e−1 ≈ 1

3
= e−

τ
τ ,

so τ ≈ 10s.

23.2.2 Exponential Time Dependence

Before working out the time dependence of the parameters of an RC circuit from the physics, let’s review the
properties of exponential curves.
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Decreasing Exponential Curve: Some features of RC circuits decrease with time.
They have a general time dependence of

exp(−t/τ)

which at time t = 0 is one and decreases to 0 at long times. The graph below might be
the voltage across a resistor in a discharging RC circuit with initial voltage, ∆V0 = 10V,
and time constant τ = 10s. τ is the time required to the initial voltage ∆V0 to decay
to ∆V0/e = ∆V0/2.72 = 0.37∆V0.
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Increasing Exponential Curve: Some features of RC circuits increase with time. They
have a general time dependence of

1 − exp(−t/τ),

which at time t = 0 is zero and increases to 1 at long periods of time. The graph
below might be the voltage across a charging capacitor with final voltage, ∆Vf = 10V,
and time constant τ = 10s. The time τ is the time required for the voltage to reach
1 − 1

e = 0.63 of the final voltage.
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Exponential is Dimensionless: The thing, X, in the exponential function exp(X) =
eX or the log function ln(X) cannot have any dimensions, so if the dimensions fail to
cancel, you blew it.

Solving an Equation Containing Exponentials : If we have the equation, Y =
exp(X), then we can take the natural log of both sides to get X = ln(Y ). If however we
have the equation Y = 1−exp(X) then the log of both sides is ln(Y ) = ln(1−exp(X)).
To solve this equation, we rearrange before taking the log, exp(X) = 1 − Y , or X =
ln(1 − Y ).
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23.2.3 Discharging RC Circuits

An RC circuit is drawn to the right. The charge on the positive
capacitor plate changes as a function of time, Q(t), causing a
current through the circuit. The charge and electric field of the
capacitor are drawn. Initially the capacitor has charge Q(0). Since
opposite charges attract, the initial charge on the capacitor flows
through the resistor until at long periods of time, the capacitor
becomes uncharged. The corners of the circuit are labelled and
applying Kirchhoff’s loop equation to the one loop circuit gives,

∆VAB + ∆VBC + ∆VCD + ∆VDA = 0

 R

 A

 B  C

 D

 +  +  +

 _  _  _

 +

 _

 I

The potential differences ∆VBC = ∆VDA = 0 because the potential difference across a perfect wire is zero. The

potential difference ∆VAB = +IR because the potential drops as current crosses a resistor. The potential across
the capacitor is ∆VCD = −Q/C because potential decreases in the direction of the electric field. Substituting
into the loop equation gives,

IR − Q

C
= 0

For the direction of I chosen, the current is related to the charge on the positive capacitor plate by

I = −dQ

dt

because a decrease in the charge on the plate causes a positive current.

−R
dQ

dt
− Q

C
= 0

Rearranging gives,
dQ

Q
= − 1

RC
dt

Integrate from time 0 when the capacitor has charge Q(0) to time t,

∫ Q(t)

Q(0)

dQ

Q
= − 1

RC

∫ t

0

dt

ln(Q(t)) − ln(Q(0)) =
−t

RC

Use a property of logarithms, ln(B) − ln(A) = ln(B/A),

ln(Q(t)/Q(0)) =
−t

RC

Exponentiate both sides. We will write the exponential both as exp(x) and ex.

exp

(

ln(Q(t)/Q(0))

)

= exp(−t/RC)

Use the property of exponentials that exp(ln(x)) = x, to yield the final result

Q(t) = Q(0)e−
t
τ

where τ = RC. All other circuit properties are related to Q(t) as shown in the table below:
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Circuit Property Time Dependence

Charge of Capacitor Q(t) = Q(0)e−
t
τ

Current I(t) = −dQ
dt = Q(0)

RC e−
t
τ = I(0)e−

t
τ

Potential Difference Across Capacitor ∆VC(t) = Q(t)
C = Q(0)

C e−
t
τ = ∆VC(0)e−

t
τ

Potential Difference Across Resistor ∆VR(t) = RI(t) = ∆VR(0)e−
t
τ

Example 23.5 Analyze Discharging Behavior of an RC Circuit
Problem: A 3.0nF capacitor is charged to the point that it has a 6.0V potential difference between the plates.
This charged capacitor is then placed in series with a 9.0MΩ resistor and allowed to discharge. What is the
time-dependent charge on the capacitor? What is the time-dependent current through the resistor?

Solution

R

C

I

Definitions

R1 ≡ Resistance of Resistor 1

∆V0 ≡ Initial Potential Difference Across C

C ≡ Capacitance of the capacitor

I(t) ≡ Current in the circuit

Q(t) ≡ Charge on the Capacitor

I0 ≡ Initial Current

Q0 ≡ Initial Charge on Capacitor

Strategy: Use formula for discharging capacitor.
(a) Compute Initial Charge, Q0, on Capacitor: By definition of capacitance, the initial charge on the capacitor
is Q0 = C∆V0.

Q0 = C∆V0 =
(

3.0 × 10−9F
)

· (6.0V) = 18nC

(b) Compute Time Constant, τ : The time constant of an RC circuit is τ = RC,

τ = R1C = 9.0 × 106Ω · 3.0 × 10−9F = 27ms

(c) Use Discharging Form for Charge: Since the charge on the capacitor starts at its highest value Q0 and
decays toward zero, the correct form of the time dependence is a decaying exponential,

Q(t) = Q0 exp(−t/τ)

Q(t) =
(

18 × 10−9C
)

exp
[

−t/
(

27 × 10−3s
)]

(d) Compute Initial Current, I0, Through Resistor: Initially, the voltage across the capacitor is VC , so the
initial current is by Ohm’s Law

I0 =
∆VC

R1
= 6.0V/9.0MΩ =

2

3
× 10−6A

(e) Use Discharging Form of Current: Since the current in the circuit starts at its highest value I0 and decays
toward zero, the correct form of the time dependence is a decaying exponential,

I(t) = I0 exp(−t/τ)
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I(t) =

(

2

3
× 10−6A

)

exp
[

−t/
(

27 × 10−3s
)]

Example 23.6 Graphical RC Decay Problem
Problem: A capacitor is allowed to discharge through a 100Ω resistor and the voltage across the capacitor is
measured using a voltmeter and plotted below.

(a)Write the equation for ∆VC(t), the voltage across the capacitor as a function of time, and give
numerical values for any constants you introduce including the time constant τ .

(b)Compute the capacitance of the capacitor.

(c)How long does it take the voltage across the capacitor to decay to 1
4 of its initial value? Solve the

equation you wrote using the constants in part (a) instead of reading them off of the graph.
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Solution to Part(a)

The potential difference across the capacitor decays as a function of time, so the time dependence is

∆VC(t) = ∆VC0e
− t

τ

where ∆VC0 = 100V which can be read directly from the graph. The time constant τ = RC is the time for the
voltage to decay to e−1 = 0.37 of its initial value, so it is the time when the voltage crosses (0.37)(100V) = 37V,
which can be read from the graph as τ = 3s.

Solution to Part(b)

The capacitance of the capacitor is C = τ/R = 3s/100Ω = 0.03F.

Solution to Part(c)
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The time for the voltage to fall to 1
4 of its initial value is found by solving the decay equation,

0.25 =
∆VC

∆VC0
= e−

t
τ

ln(0.25) = − t

τ

t = −τ ln(0.25) = −(3s)ln(0.25) = 4.2s

23.2.4 Charging RC Circuit Behavior

A charging RC circuit connects an uncharged capacitor and a resistor in series with a battery at time t = 0.
The capacitor charges and gradually blocks the current in the circuit until as t ⇒ ∞, the capacitor is fully charged
and no current flows in the circuit. The table below summarizes the time dependence of a charging RC circuit.
Note, some quantities increase with time and some quantities decay with time.

Circuit Property Time Dependence

Charge of Capacitor Q(t) = Q(∞)(1 − e−
t
τ )

Current I(t) = I(0)e−
t
τ

Potential Difference Across Capacitor ∆VC(t) = ∆VC(∞)(1 − e−
t
τ )

Potential Difference Across Resistor ∆VR(t) = RI(t) = ∆VR(0)e−
t
τ

In the table, Q(∞) is the charge on the capacitor at long times and ∆VC(∞) is the potential difference across
the capacitor at long times.

Example 23.7 Analyze Charging Behavior of an RC Circuit
Problem: An uncharged 3.0nF capacitor is in series with a 9.0MΩ resistor. These are then connected across a
6.0V battery and the capacitor is allowed to charge. What is the time-dependent charge on the capacitor? What
is the time-dependent current through the resistor?

Solution

I

R1

∆V1 C

Definitions

R1 ≡ Resistance of Resistor 1

∆V1 ≡ Potential Difference Across Battery

C ≡ Capacitance of the capacitor

I(t) ≡ Current in the circuit

Q(t) ≡ Charge on the Capacitor

I0 ≡ Initial Current

Qf ≡ Final Charge on Capacitor = Q(∞)

Strategy: Use formula for charging capacitor.
(a) Compute Final Charge, Qf , on Capacitor: At long times, the capacitor draws no current, so using the
loop equation for the circuit ∆V1 − IR1 − ∆VC = 0 with If = 0, gives ∆V1 = ∆VC , and by definition of
capacitance, Qf = ∆VCC,

Qf = 6.0V · 3.0 × 10−9F = 18 × 10−9C = 18nC
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(b) Compute Time Constant, τ : The time constant of an RC circuit is

τ = R1C = 9.0 × 106Ω · 3.0 × 10−9F = 27ms

(c) Use Charging Form for Charge on Capacitor: Since the charge on the capacitor starts at zero and
increases toward Qf , an increasing exponential time dependence is appropriate,

Q(t) = Qf(1 − exp(−t/τ))

Q(t) =
(

18 × 10−9C
) {

1 − exp
[

−t/
(

27 × 10−3s
)]}

(d) Compute Initial Current, I0, Through Resistor: Use Ohm’s Law to calculate initial current, the current
is I0 = ∆V1/R1

I0 = 6.0V/9.0MΩ =
2

3
× 10−6A

(e) Use Charging Form of Current: The current has its maximum value at t = 0 and then decays toward
zero, so the proper form of the time dependence is

I(t) = I0 exp(−t/τ)

I(t) =

(

2

3
× 10−6A

)

{

exp
[

−t/
(

27 × 10−3s
)]}

Example 23.8 RC Circuit Problem
Problem: A 1000µF capacitor is charged to 12V by a car battery through a 10000Ω resistor.

(a)What is the time constant for the charging process?

(b)Write the function for the potential difference across the capacitor if it begins charging at t = 0.

(c)After a long time, how much energy is stored in the capacitor?

Solution to Part(a)

The time constant for an RC circuit is τ = RC = (1000µF)(10000Ω) = 10s.

Solution to Part(b)

For a charging capacitor, the potential difference starts at zero and charges to the applied voltage,

∆VC(t) = ∆Vf (1 − e−
t
τ )

where ∆Vf = 12V.

Solution to Part(c)

The energy stored in a capacitor is

U =
1

2
C∆V 2 =

1

2
(1000µF)(12V)2 = 72000µJ = 0.072J
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23.3 Graphing RC Circuits

The behavior of an RC circuit involves a time dependence which can be measured and graphed. Interpreting
those graphs is a key skill in understanding RC circuits.

Determine Time Dependence from Graph: If the plot increases toward a maximum
value for a long period of time, then the time dependence is 1− exp(−t/τ). If the plot
begins at its highest value and decays toward zero, then the time dependence has the
functional form exp(−t/τ).

Determine Leading Constant for Decaying Exponential: For a decaying exponential
time dependence of the form ∆V (t) = ∆V0 exp(−t/τ), the constant ∆V0 is ∆V (0),
the value of the function at time zero.

Determine Leading Constant for Increasing Exponential: For an increasing expo-
nential time dependence of the form ∆V (t) = ∆Vf (1− exp(−t/τ)), the constant ∆Vf

is ∆V (t → ∞); so it is the value ∆V (t) approaches as t becomes large.

Compute Time Constant from Point: The time constant can be approximated by
taking any point off the graph and using this point to solve for τ , as shown in Example
23.9 Use a Potential versus Time Plot to Determine RC Circuit Properties.

Example 23.9 Use a Potential versus Time Plot to Determine RC Circuit Properties
Problem: A capacitor is charged to some value, then connected in series with a 100Ω resistor and allowed to
discharge. A measurement of the potential difference across the capacitor is shown in the figure below. Compute
the time constant of the circuit, the capacitance of the capacitor, and the initial charge stored on the capacitor.
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Solution

Strategy: Determine the time constant from the plot, then use the definition of the time constant and the
definition of capacitance.
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(a) Determine Form of Time Dependence: Examine the graph and determine the functional form of the
time dependence, whether it is exp(−t/τ) or 1 − exp(−t/τ). Read the overall constant off the curve. Since the
curve begins at its maximum value and decays toward zero, the time dependence has the form

∆VC = ∆V0 exp

(

− t

τ

)

.

The constant ∆V0 = 12V is voltage at t = 0.
(b) Determine the Time Constant: Choose any point on the curve. Determine the time ts and the potential
∆V (ts) for that particular point. Solve time dependence for τ , at ts ≈ 0.00054s the potential difference is
∆VC(ts) = 2V. Solve the time dependence for the time constant,

∆VC(ts) = ∆V0 exp

(

− ts
τ

)

ln

(

∆VC

∆V0

)

= ln

(

exp

(

− ts
τ

))

= − ts
τ

τ = − ts

ln

(

∆VC

∆V0

)

The time constant is then

τ = − 0.00054s

ln(2V/12V)
= 0.00030s = 0.3ms

(c) Compute the Capacitance: The capacitance can be determined from the definition of the time constant,
τ = RC. Using definition of the time constant C = τ/R gives

C = 0.00030s/100Ω = 3 × 10−6F = 3µF

(d) Compute the Initial Charge Stored: Use the definition of capacitance, C = Q/∆V , to determine the
initial charge stored on the capacitor. The initial charge is given by Q0 = C∆V0

Q0 = 3 × 10−6F · 12V = 36 × 10−6C = 36µC

Example 23.10 Sketch Voltage Curve for RC Circuit
Problem: An RC circuit is constructed from a 12V battery, a 1MΩ resistor, and a 5000µF capacitor in series.

(a)What is the time constant of the circuit?

(b)In the space below, make an approximate sketch of the voltage across the capacitor as the RC circuit
charges.

Solution to Part(a)

The time constant is τ = RC = (5000µF)(1 × 106Ω) = 5000sec.

Solution to Part(b)
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In one time constant, the voltage across the capacitor reaches
(1 − e−1) = 0.63 of its final value.

time(sec)

VC (Volts)

12V

5000sec
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Chapter 24

Final Topics Test 2

24.1 What Does a Capacitor Do?

In physics lab, we use capacitors as energy storage devices. A battery is an energy storage device designed
to provide energy to a circuit at a roughly constant potential difference. A battery will provide energy for hours
before fully discharging. We can adjust the rate at which a battery provides energy to a circuit by changing the
resistance in a circuit. The rate energy can be provided by a battery is restricted by the internal resistance of
the battery. Capacitors also store energy, but deliver it back with a changing voltage. The rate at which energy
is stored or returned can be adjusted by changing the resistance and therefore the time constant. A capacitor’s
internal resistance is very small, so if we wish, we can get energy out of a capacitor very fast.

We will use this property to fire one of our energy weapons, called a Gauss Gun. The Gauss gun is just a
coil of wire wrapped around a glass tube. The gun fires a magnetic slug. We use a 1000µF capacitor to power
the Gauss gun. This capacitor is charged to 150V by a power supply in about 5s. So if τ = 5s = RC, then
R = 5s/0.001F = 5000Ω and the maximum current in the charging process is Imax = ∆V/R = 150V/5000Ω =
0.3A, a very reasonable current. We, then, connect the capacitor to the Gauss Gun which has a resistance of
0.1Ω. The capacitor delivers a peak current of V/R = 150V/0.1Ω = 1500A, which is a very big current. The
capacitor returns the energy we placed in it in a time τ = RC = (0.1Ω)(0.001F) = 1× 10−4s. We put in energy
slowly and got it back fast.

Capacitors are one of the most common electric circuit elements and are used to smooth signals. Since
capacitors store energy, they maintain their own potential difference, and act to resist a change in potential. The
two figures below show the result of applying a step in potential to a circuit with no capacitance and to a circuit
with capacitance.

 t

 V

 No Capacitance

 t

 V

 With Capacitance

The voltage step in the circuit with capacitance is smoothed out. If we return to the plumbing analogy
developed in lab, a capacitor acts like a pressure tank. When pressure rises in a system the capacitor takes up
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some of the excess. When pressure falls, the capacitor acts as a reservoir to maintain the pressure.

24.2 Revisiting Shielding by Conductors

The electric field is zero in a conductor. This means that if a conductor separates two regions of space the
field in one region does not affect the field in the other region. The conductor isolates the two regions. The figure
below shows a conducting slab and a conducting shell in the field of a positive charge. The conducting slab has
zero net charge, so there must be a charge density on its right surface to balance the charge density on the left
surface. However, the charge density on the right surface spreads uniformly over the surface just as if the golf
tube was not there.

 +  +

 +

 +

 +

 _

 _

 _

 conductor

 +

 +

 +

 _

 _
 _

 No Field

We can reverse the situation for the conducting shell and place the charge inside as shown in the example
below.

Example 24.1 Charge inside a Conducting Shell
Problem: On the figure to the right,

(a)sketch the electric field lines emphasizing im-
portant features to make sure you demonstrate
your understanding of electric field maps. Draw
in any induced charge. The object is an infinite
cylindrical uncharged conductor, with an infinite
line charge of charge density +λ that is parallel
to the cylinder’s axis, but off center.

(b)Using >, < and/or = signs, rank the electric
field at points a, b, c, and d. Are any of these
zero. If so, why?

ab
c d

Conductor

λ

Solution to Part(a)
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The drawing should have the following features: The field lines
should leave λ symmetrically and radially. The lines should be
evenly spaced about λ. The lines should curve and hit the inner
surface of the conductor perpendicular to the surface. An equal
number of lines should leave the outer surface of the conductor
radially. + charge should be drawn where lines begin and − charge
should be drawn where lines end.

 +Q
ab

c d

Conductor

 _ 

 _ 

 _ 

 _ 

 + 

 +  + 

 + 

Solution to Part(b)

Ea > Eb > Ec > Ed = 0. Ed = 0 because the region is inside a conductor.

Finally, we can consider grounding the conductor. The surface charge densities not held in place by the charged
objects will escape to ground, completely isolating one region from the charge in the other region.

 +

 _

 _

 _

 conductor

 No Field

 +Q

 _ 

 _ 

 _ 

 _ 

 conductor

 No Field
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Chapter 25

Biot-Savart Law

Electric charges produce electric fields. Moving electric charges produce magnetic fields. This might come
as something of a surprise, since as a kid you probably discovered (without really saying it) that “magnets make
magnetic fields.” Why don’t we start from this point, using magnets as our basic building blocks? We might
hope for a nice analogy between electric charge as the source of electric field and something else as the source
of magnetic field, but it turns out that there is no such thing as magnetic “charge”. Magnets can be explained
in terms of the motion of the electric charges they contain. So we begin with the more basic concept of moving
charges. We will come back to magnets later.

25.1 No Magnetic Charge

25.1.1 No Magnetic Charge

It would be nice at this point to write down a Coulomb’s law for magnetism and tell you everything you’ve
learned for electric fields carries over for magnetic fields. The universe is not that cooperative.

No Magnetic Charge: There is no magnetic analogue to an electric point charge.
Magnetic charge simply does not exist. The simplest magnetic fields are therefore
dipole fields, instead of monopole fields. Physicists sometime state this as, “no magnetic
monopoles”.

The absence of magnetic charge means the expression which corresponds to Gauss’ Law for magnetism is partic-
ularly simple.

Magnetic Flux Through any Closed Surface (Maxwell II): The mathematical ex-
pression of non-existence of magnetic charge is that the magnetic flux, φm, through
any closed surface is always zero.

φm =

∫

S

( ~B · n̂)dA = 0

where ~B is the magnetic field on the surface. Note the similarity to Gauss’ Law, where
the flux from the electric field is equal to Qenclosed/ε0, but for magnetic fields, the
magnetic charge enclosed is always zero. This is the second Maxwell equation, Gauss’
law is the first.

The fact that there is no magnetic charge is a restriction on the kind of magnetic field map we can draw.

Example 25.1 Identifying Valid Magnetic Field Maps
Problem: In some region, you are told the magnetic field is ~B = B0xx̂. Is this a possible magnetic field? Why
or why not?

Solution
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This cannot be a valid field, since it produces a net flux out of a parallel-piped with sides ⊥ to the x-axis.

Example 25.2 Possible Magnetic Field Maps
Problem: Is the field map to the right an electric field, magnetic field, or possibly
both? Why?

Solution

Since net flux exits the region, it must be an electric field map. The net flux exiting any region for a magnetic
field is zero.

25.1.2 Maxwell’s Equations Part I

Four equations, called Maxwell’s equations, after James Clerk Maxwell, the physicist who completed the
equations, completely describe the behavior of electric and magnetic fields. The Lorentz force describes how these
fields act on charged particles. We have been working with two of Maxwell’s equations for weeks, Gauss’ law and
Faraday’s law in the special case where there are no changing magnetic fields. Over the next few weeks we will
complete this set of equations and I will show the addition of new pieces of Maxwell’s equations as we complete
our understanding of the behavior of the electromagnetic field.

Maxwell’s Equations Part I: Maxwell’s Equations and the Lorentz force as introduced
to this point are:

Maxwell’s Equations

Gauss’ Law:
∫

S
( ~E · n̂)dA = Qenclosed

ǫ0

No Magnetic Monopoles:
∫

S
( ~B · n̂)dA = 0

Faraday’s Law (Independence of Path):
∮

C
~E · d~ℓ = 0 when there are no

changing magnetic fields.

Ampere’s Law:

Lorentz Force

~F = q ~E when there are no magnetic fields

One Maxwell’s equation is simply missing and is the integral expression of the Biot-Savart law of next section.
A number of the equations have restrictions that we will remove over the next few weeks.

25.2 Biot-Savart Law

A magnetic field is produced by moving electric charge, which might be charged particles in flight, electric
current flowing in a wire, or electrons ‘spinning’ and orbiting the nucleus of an atom. Magnetic fields are different
from electric fields in several ways. By now you should have a feel for the way an electrostatic ~E field “radiates”
from (or toward) electric charges. Mathematically, ~E for a point charge is directed along the line from the source
charge to the field point. Magnetic field isn’t that simple–it has a sort of “sideways” character.
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25.2.1 Mathematical Preliminaries - The Cross Product

Since there is no magnetic charge, the actual law that allows the calculation of the magnetic field from the
charge is a bit more complicated. It involves a new vector operation, the cross product. The cross product is
an operation which takes two vectors and returns a third vector perpendicular to both, with length equal to the
area of the parallelogram formed by the two vectors. If the cartesian form of the two vectors is known, the cross
product can be defined:

Definition of Cross-Product in Cartesian Coordinates:

~C = ~A × ~B = (AyBz − AzBy)x̂ + (AzBx − AxBz)ŷ + (AxBy − AyBx)ẑ

We will rarely use this definition to compute the cross product. It is usually easier to compute the magnitude of
the cross product, then use the right hand rule to compute the direction.

The Magnitude of the Cross Prod-
uct : The magnitude of a cross-
product is

∣

∣

∣

~A × ~B
∣

∣

∣
= AB sin θ

where A and B are the magnitudes
of ~A and ~B respectively, and θ is the
angle smaller than 180 degrees be-
tween ~A and ~B. Note that since sine
is greatest when the angle is 90 de-
grees, a cross product is largest when
the two vectors are perpendicular.

θ

A

B

The above means that the cross-product of two parallel vectors or a vector with itself is zero. The magnitude
of the cross-product of two perpendicular vectors is |~C| = | ~A × ~B| = | ~A|| ~B|.

The “Right-Hand Rule” (RHR) :

To find the direction of ~C = ~A × ~B,
point the fingers of your right hand
in the direction of ~A. Then rotate
your wrist around the axis formed by
~A until your hand is in a position to
allow curling your fingers in the direc-
tion of ~B through an angle less than
180◦. (Sometimes this gets very awk-
ward! You might have to stand on
your head or turn around to achieve
it.) Your thumb will then point in the

direction of ~C.

A

B

C

Avoid these pitfalls: Make sure you are using your right hand in all these manipulations! (We laugh ourselves
silly when we see students’ left hands in motion during a test.) Also make sure you do things in the right order;
~A × ~B is not the same as ~B × ~A–they differ by a minus sign–so you must align your fingers with the first vector
in the cross product, then curl them into the second vector in the cross product, not the other way around.

Example 25.3 Cross-Product Example
Problem: Two vectors have values ~A = (1, 2, 3) and ~B = (5, 2, 1). Compute ~C = ~A × ~B.

Solution
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~C = ~A × ~B = (AyBz − AzBy)x̂ + (AzBx − AxBz)ŷ + (AxBy − AyBx)ẑ

~C = (2 − 6)x̂ + (15 − 1)ŷ + (2 − 10)ẑ = −4x̂ + 14ŷ − 8ẑ

Because of the form of the physical laws governing magnetic fields, we have to work in three dimensions.
When a three-dimensional coordinate system is drawn, you must make choices about the direction of the axes.
This choice must be made by some criteria or all the signs of the numbers we compute are arbitrary.

Right and Left Handed Coordinate Systems: When we draw a three-dimensional
coordinate system on a flat piece of paper, we can choose the positive directions for
two of the axes in any direction we want. The third axis must be chosen so x̂× ŷ = ẑ.
Such a coordinate system is called a right-handed coordinate system and will give us
correct signs. If we choose the third axis so that x̂ × ŷ = −ẑ, we have drawn a left
handed coordinate system and all the quantities we compute will be incorrect.

 Right Handed Coordinate System

 x

 y

 +z out-of page

 z

 Left Handed Coordinate System

 x

 y

 +z into page

 z

Example 25.4 Selecting Right Handed Coordinate System
Problem: You draw a coordinate system with +x̂ pointing to the right on the page and +ẑ pointing to the
bottom of the page. In what direction is +ŷ?

Solution

We have to select a direction for ŷ so that ẑ = x̂ × ŷ. If x̂ points to the right
and ẑ points to the bottom of the page, then ŷ must point out-of the page.
Check this by applying the right hand rule to x̂ × ŷ.

 x

 z

 y out of the page

When I do a cross-product, I draw a right-handed coordinate system and use it to work out the results of
crossing various combinations of unit vector.

Example 25.5 Dr. Stewart’s Cross-Product Method
Problem: The vector ~A = (2, 0, 3) = 2x̂ + 3ẑ is crossed with the vector ~B = (4, 3, 0) = 4x̂ + 3ŷ. Calculate the

cross-product ~C = ~A × ~B.
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Solution

(a) Draw a Right-Handed Coordinate System: Use the definition of a
right-handed coordinate system, ẑ = x̂ × ŷ, to select the correct direction for
the z-axis.

 x

 y

 z out-of page

(b) Multiply Out Cross-Product:

~C = ~A × ~B = (2x̂ + 3ẑ) × (4x̂ + 3ŷ)

Multiply out the cross-product without changing the order of the terms.

~C = (8x̂ × x̂ + 9ẑ × ŷ + 12ẑ × x̂ + 6x̂ × ŷ)

Since the angle between a vector and itself is zero, a vector crossed with itself is zero, so x̂ × x̂ = 0. To do the
other cross-products, use the right hand rule on the coordinate system drawn above, x̂× ŷ = ẑ, ẑ × ŷ = −x̂, and
ẑ × x̂ = ŷ.

~C = −9x̂ + 12ŷ + 6ẑ

25.2.2 Introduction to Magnetostatics

Electricity and magnetism is such a large subject that the only way to digest it is in bits. We started with
electrostatics to keep things simple at first. Electrostatics means that the charges are stationary, and that’s why
we had only electric fields to consider (no motion–no ~B fields). Traditionally we start studying magnetic fields
with magnetostatics, too, to keep things simple at first. But this sounds like a contradiction—how can we have
statics when ~B requires charges in motion?

By magnetostatics we don’t mean that charges aren’t moving. We mean that the charge distributions are not
changing with time. This can happen even when charges are in motion, provided every charge has a neighboring
charge that moves over to take its place right away. Here’s an example: a very large number of charges flow
continuously around a circular loop of wire (this is indeed physically possible if the wire is a superconductor).
Another example is a lit flashlight. The battery drives a constant electric current through the bulb. In both cases,
charges are moving, but the charge distribution is maintained, since the charges simply follow each other around
the path. (I am thinking of a very large number of charges following each other very closely, so that the flow
looks smooth and continuous.)

Definition of the Magnetic Field: The magnetic field, ~B, is a vector field produced
by moving charges.

Units of the Magnetic Field: The units of the magnetic field are the Tesla(T).

1T = 1
Ns

Cm

The unit Gauss (G) is also used for magnetic fields. It must be converted to Tesla
before any calculations are performed.

1G = 1 × 10−4T
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Permeability of Free Space: The permeability of free space, µ0, (pronounced “mew
naught”) is a new fundamental constant of the universe.

µ0 = 4π × 10−7 Tm

A

The strength of the magnetic field is set by µ0.

25.2.3 Biot-Savart Law

There is only charge and field. Since the beginning of the class, we have worked with charge and electric
field—first with stationary charge, then with charge moving as constant current in DC circuits, and finally as
charge moving in variable currents in RC circuits. In this section, the basic law governing the relation between
the magnetic field and moving charge is presented. The law will be presented in two forms; first for an isolated
moving charge, then for a current of charges moving in a wire.

Stationary Charges Produce NO Magnetic Field: Every moving charge in the uni-
verse produces a magnetic field. An unmoving or stationary charge does not produce a
magnetic field.

Biot-Savart Law (Particle Form): The magnetic field, ~B0, produced by a particle of
charge q moving with velocity ~v is

~B0 =
µ0

4π

q~v × r̂10

r2
10

where ~r10 is the vector from the location of the charge to the location where the field is
calculated, and µ0 = 4π× 10−7 Tm

A . This formula is an approximation valid for particle
speeds that are small compared to the speed of light.

Example 25.6 Magnetic Field of Moving Electron
Problem: An electron is shot in the −ŷ direction along the y axis at 0.1% the speed of light. What is the
magnetic field at (10cm, 0, 0) when it reaches the origin?

Solution

x

y

z-axis out of page

P

 into page

v

− e
r0P

 BP

Definitions

~r0p = (10cm, 0, 0) ≡ Vector Pointing from Electron at Origin

−q = 1.609 × 10−19C ≡ Charge of Electron

~v = −0.001cŷ ≡ Velocity of Electron

~BP ≡ Magnetic Field at P

Strategy: Use Biot-Savart Law (Particle Form) to compute the magnetic field.
(a) Determine Direction of ẑ: Use the Right Hand Rule to determine the direction of ẑ for a right-handed
coordinate system. Point the fingers of your right hand in the direction of x̂ and curl the fingers in the ŷ direction,
which causes your thumb to point out of the page. So for x̂ × ŷ = ẑ, ẑ points out of the page.
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(b) Use the Magnetic Field of a Moving Particle: Let P be the point where the field is computed. The
Biot-Savart Law gives the magnetic field of a moving particle as

~B0P =

(

µ0

4π

)

q~v × r̂0P

r2
0P

where ~r0P points from the origin to the point P .
(c) Compute the Magnitude of ~B0p: Since ~v and r̂0P are ⊥, the magnitude of |~v× r̂0P | = |~v||r̂0P | = |~v| and

| ~BP | =
µ0|q||~v|
4πr2

0P

(d) Compute Direction of Magnetic Field: First compute the direction of ~v × r̂0P using the Right Hand
Rule. Pointing the fingers of the right hand in the ~v direction and curling the fingers in the r̂0P direction gives
the direction of ~v × r̂0P out of the page. Since q < 0, ~BP is into the page in the −ẑ direction.
(e) Substitute and Compute:

| ~BP | =
(4π × 10−7 Tm

A )(1.609 × 10−19C)(0.001)(3 × 108 m
s )

4π(0.1m)2
= 4.827 × 10−19T

Combine this with the direction of the field to write the magnetic field as a vector

~BP = −4.827 × 10−19Tẑ

In physics, we routinely deal with charge moving through space, but in everyday life, most of the magnetic
fields we work with are generated by currents flowing in wires. The reformulated expression for the magnetic field
due to a current is called the Biot-Savart law. There is a subtlety though, a current is continuous (Kirchhoff’s
Junction Law), so it really does not make sense to talk of an isolated current at a point. We therefore express the

Biot-Savart law in terms of the infinitesimal magnetic field d ~B generated by an infinitesimal element of current
Id~ℓ where the current, I, flows in the direction ~ℓ and the field is generated by a segment of length dℓ of the
current.

Biot-Savart Law: The magnetic field d ~B0 produced by the current element Id~ℓ is

d ~B0 =
µ0

4π

Id~ℓ × r̂10

r2
10

where ~r10 is the vector from the current element to the location where the field is com-
puted, and µ0 = 4π × 10−7 Tm

A . This is the fundamental starting point for computing
the magnetic field of any current distribution. We imagine the distribution as a collec-
tion of current elements, use the Biot-Savart law to find the field contributed by each
current element, then sum all the contributions to get the total net field.

Biot-Savart Law - Magnitude Only: The magnitude of the magnetic field |d ~B0|
produced by the current element Id~ℓ is

dB0 =
µ0

4π

I|d~ℓ × r̂10|
r2
10

=
µ0

4π

Idℓ sin θ

r2
10

where ~r10 is the vector from the current element to the location where the field is
computed and θ is the angle between d~ℓ and ~r10 and the angle is measured from d~ℓ to
~r10.
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Definition of Current Element: Think of
a current element Id~ℓ as a tiny bit of a wire
carrying electric current I. dℓ is the length
of the bit of wire, and d~ℓ points along the
wire in the direction of current flow. We will
need to imagine current-carrying conductors
as collections of current elements in order to
apply the principle of linear superposition in
computing the magnetic field.

I

25.2.4 Representing Magnetic Fields at Right Angles to the Page

When drawing electric fields, the field maps showed a side view of the field. Because of the cross product in
the definition of the magnetic field, the field is at right angles to the source of the field. It is sometimes useful to
draw the end view of a field.

Representing a Third Dimension on a Two-Dimensional Drawing : Represent a
vector going into the page as a circle with a cross inside and a vector pointing out of
the page as a circle with a dot in it. This is supposed to represent whether the arrow
is coming toward you (arrow head = circle/dot) or going away from you (arrow tail =
circle/cross). The cross is supposed to represent the feathers on the arrow.
This is also used to represent a current flowing into or out of the page.

(a) Field Into Page

(b) Field Out of Page
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Representing Magnitude of Field Into or Out of Paper: There are two ways to
represent the strength of the field into or out of the paper. The magnetic field is stronger
where arrows are closer, so a stronger field can be represented by arrows spaced closer
together. We will also sometimes ask for the magnetic field at isolated points, in this
case the spacing of the arrow heads/tails does not mean anything. Use larger or smaller
circles to represent relative magnitudes in this case.

(a) Original Field

(b) Weaker Field Represented 

by Greater Spacing

(c) Stronger Field Represented 

by Larger Arrow

We can use this notation to show the z axis direction in a right-handed coordinate
system. The figure to the right shows a right-handed coordinate system.

 x

 y

 z

25.3 Simple Current Distributions

25.3.1 Understanding the Difference Between Important Magnetic Fields

You’ll note that no example of the computation of a magnetic field from the Biot-Savart law was given earlier.
This is because the law involves an infinitesimal current element which must be integrated to produce a finite
field. To become familiar with the magnetic field, we will select a few important current distributions and try to
understand their fields. The formula for the magnetic fields we present can either be found by integrating the
Biot-Savart law (next chapter) or applying Ampere’s Law (two chapters down the line). The first two systems,
the infinite straight wire and the finite current element, are different limits in the calculation of any circuit. If the
point where the field is computed is very near to the wire, the magnetic field will be that of an infinite straight
wire. If the field point is very far from a straight wire, all the current appears to be at the same point and the
system can be approximated with a finite current element, I∆ℓ where ∆ℓ is the total length of the wire. The
third system is the infinite solenoid, because it produces a uniform field in its interior.
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25.3.2 Magnetic Field of Infinite Wire

Magnetic Field of an Infinite Wire Segment: The magnitude of the magnetic field
of an infinite straight wire is

B =
µ0

2π

I

R

where I is the current and R is the distance out from the wire. The direction of the
field is along a circle concentric with the wire. The direction along the circle is given
by the Right Hand Rule for a Wire.

Right Hand Rule for Wire: Grab the wire with your right hand with your thumb
pointing along the wire in the direction that the current is flowing. Then, the direction
your fingers curl around the wire tells you the direction of the field. Know this one
cold!!!!

B

I

The figure below shows the magnetic field of an infinite straight wire viewed from the end and viewed from
the side.

 I

 Side View

 I

 End View

Example 25.7 Magnetic Field of a Current Carrying Wire
Problem: An infinite straight wire runs down the z axis carrying a current of 3A in the +z direction. Compute
the magnetic field at the point P at 10cmx̂

Solution
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(a) Compute the Direction: Let the direction z be upward
and x to the right. For a right handed coordinate system, y must
be into the page so that ẑ = x̂ × ŷ as drawn to the right. Use
the right hand rule for a wire. Imagine grabbing the wire with
your right hand so that your fingers curl around the wire and your
thumb points in the direction of the current. Your fingers curl in
the direction of the field. At point P, your fingers point into the
page, so the magnetic field is into the page in the +y direction.

x

z

 y into page

I

 P

B

(b) Compute the Magnitude: The magnitude of the magnetic field is given by the formula for the magnetic
field of an infinite wire,

|B| =
µ0I

2πR

where R is the distance from the wire.

|B| =
(4π × 10−7 Tm

A )(3A)

2π(0.1m)
= 6 × 10−6T

Therefore, the full magnetic field is
~B = 6 × 10−6Tŷ

25.3.3 Field of a Finite Current Element

When the distance to the field point is large compared to the length of the current element, we can use the
finite current element approximation to the Biot-Savart law.

Definition Finite Current Element: A
continuous current, like that flowing in an
electrical circuit, can be approximately rep-
resented by a set of finite current elements
I∆~ℓ. The vector ∆~ℓ is a vector with finite
length ∆ℓ, which is the length of some seg-
ment of the current, and points in the direc-
tion of the current.

 I

∆

∆

Consider the segment of wire from A to B shown below. The vector ∆~ℓAB points in the same direction as
the wire and has length the distance between points A and B. As such the vector ∆~ℓAB = ~rAB the displacement
vector from A to B. So if we have a well-drawn figure, we can just read ∆~ℓ off the figure. For example, if the
large blocks on the figure below represent 1cm then ∆~ℓAB = (2cm,−2cm, 0).
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 A

 B

 y

 x

∆  AB

Magnetic Field of a Finite Current Element: The magnetic field ~B0 produced by
the finite current element I∆~l can be approximated by

~B0 =
µ0

4π

I∆~l × r̂10

r2
10

=
µ0

4π

I∆~l × ~r10

r3
10

where ~r10 is the vector from the center of the current element to the location where
the field is computed. The vector ∆~l points in the direction of the current and has
magnitude ℓ, the length of the current element. The approximation improves as the
distance to the field point becomes large compared length of the current element. The
second expression uses the definition of the unit vector, r̂10 = ~r10/r10.

The field of the finite current element is simply the Biot-Savart law before the limit ∆~ℓ ⇒ d~ℓ is taken.

Example 25.8 Finite Current Element
Problem: A wire carrying current 0.5A passes through the origin such that the wire is parallel to the z-axis at
the origin. The current flows in the positive z direction. Compute the contribution to the magnetic field at the
point P (5cm, 0, 5cm) from an element of current of length 1mm at the origin.

Solution

(a) Compute the Magnitude: The displacement vector from the origin to the point (5cm, 0, 5cm) makes an
angle of 45◦ to the current. The displacement vector from the origin to the point P (see figure below) has length

r0P =
√

(5cm)2 + 0 + (5cm)2 = 5
√

2cm

The finite current element approximation to the Biot-Savart law is

~BP =
µ0

4π

I∆~ℓ × r̂0P

r2
0P

The current element given is 1mm in length and flows in the +ẑ direction.

I∆~ℓ = I(1mm)(ẑ) = (0.5A)(1 × 10−3)(ẑ) = 5 × 10−4Amẑ

Substitute

~BP =
µ0

4π

(5 × 10−4Amẑ) × r̂0P
r2
0P

The magnitude of the cross product is

|ẑ × r̂0P | = |ẑ||r̂0P | sin(45◦) = sin(45◦) =
1√
2
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where 45◦ is the angle between ẑ and r̂0P . Substitute and compute the magnitude

| ~BP | =

∣

∣

∣

∣

µ0

4π

(5 × 10−4Am)(ẑ × r̂0P)

(5
√

2cm)2

∣

∣

∣

∣

=
(4π × 10−7 Tm

A )

4π

(5 × 10−4Am)

(5
√

2cm)2
1√
2

| ~BP | = 7.07 × 10−9T

(b) Compute the Direction: First, draw a right handed coor-
dinate system such that ẑ = x̂ × ŷ. For the choice of the x and
z axes to the right, the y-axis points into the page. The direc-
tion of the magnetic field is found by the right hand rule. Point
the fingers of your right hand in the direction of the current and
curl your fingers in the direction of the displacement vector. Your
thumb should end up pointing into the page, in the +y direction.
Therefore,

~BP = 7.07 × 10−9Tŷ
x

z

 I

 y into page

∆

θ

r0P

 BP

Let’s rework the above example by letting the vectors do the work for us.

Example 25.9 Finite Current Element - Part II
Problem: A wire carrying current 0.5A passes through the origin such that the wire is parallel to the z-axis at
the origin. The current flows in the positive z direction. Compute the contribution to the magnetic field at the
point P (5cm, 0, 5cm) from an element of current of length 1mm at the origin.

Solution

(a) Compute the Displacement Vector: The displacement
vector points from the origin to the point (5cm, 0, 5cm), therefore
~r0P = (5cm, 0, 5cm). The length of the displacement vector is

r0P =
√

(5cm)2 + (5cm)2 = 5
√

2cm

x

z

 I

 y into page

∆

r0P

BP

(b) Compute the Current Element: The path element given is ∆ℓ = 1mm in length and flows in the +ẑ

direction, I∆~ℓ = I∆ℓẑ
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(c) Compute the Field: The finite current element approximation to the Biot-Savart law is

~BP =
µ0

4π

I∆~ℓ × r̂0P

r2
0P

=
µ0

4π

I∆~ℓ × ~r0P

r3
0P

Substitute

~BP =
µ0

4π

(I∆ℓẑ) × ~r0P

r3
0P

=
µ0

4π

((0.5A)(0.001m)ẑ) × (0.05mx̂ + 0.05mẑ)

(5
√

2 × 10−2m)3

~BP = 7.07 × 10−9T(ẑ × (x̂ + ẑ)) = 7.07 × 10−9T(ẑ × x̂ + ẑ × ẑ)

Therefore,
~BP = 7.07 × 10−9Tŷ

since ẑ × ẑ and ẑ × x̂ = ŷ which I found using the right-hand-rule on my diagram.

25.3.4 Magnetic Field of an Infinite Solenoid

Our final common field is that of the infinite solenoid. The solenoid is important because it can be used to
create much stronger fields than a single wire and the field interior to the solenoid is uniform.

Field of an Infinite Solenoid: The magnetic field inside an infinitely long solenoid
wound with n of wire turns per unit length carrying current I is

| ~B| = µ0nI

The field is uniform and directed along the axis of the solenoid in the following right-
handed sense: if you curl the fingers of your right hand to follow the current in the
solenoid windings, your right thumb points in the direction of the field inside. Outside
of the infinite solenoid, the field is zero. Avoid a notorious trap— n is not the number
of turns of wire wrapped around the solenoid! It’s a number of turns divided by the
length over which they are wrapped along the solenoid cylinder.

n =
N

L

where N is the number of wraps and L is the length.

I

B
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It is a pain drawing all those curves and it is also difficult to determine direction of the field. I will represent
a solenoid by the cut-away drawing shown below where the current direction is clearly shown. If you don’t want
to use the right-hand rule given above (and I don’t), the direction of the field can be found by using the right-
hand-rule for a wire on any of the loops. The field is uniform inside and zero outside. I have drawn the field of
one of the individual loops as a dashed line. The direction of the field of one of the loops, inside the solenoid, is
the same as the direction of the solenoid’s field.

 I into page

 I out-of page

B

Example 25.10 Magnetic Field of an Infinite Solenoid
Problem: You wind a solenoid on a paper towel tube of length 30cm using 500 wraps of wire.

(a)Compute the magnetic field in the solenoid if the solenoid carried 0.5A.

(b)How much current would you have to run through your homemade solenoid to produce a 1T magnetic
field (yes, it would burn up)?

 I into page

 I out-of page

B

Definitions

N = 500turns ≡ Number of turns

L = 30cm ≡ Length of solenoid

n = N/ℓ ≡ Turns per unit length of solenoid

I ≡ Current in solenoid

B ≡ Magnitude of Field in Solenoid

r = 1.5cm ≡ Radius of Solenoid

IC ≡ Total Current Enclosed

Solution to Part(a)

The magnitude of the magnetic field of an infinite straight solenoid is

B = nµ0I =
N

L
µ0I

where n is the turns per unit length, N is the total number of turns of wire, and L is the length of the solenoid.
If the solenoid carries 0.5A and has length L = 30cm and is wound with a total of N = 500turns of wire, then

B =
500turns

30cm
(4π × 10−7 Tm

A
)(0.5A) = 1.05 × 10−3T

Solution to Part(b)

Solve the expression for B for the current and substitute 1T for the magnetic field,

I =
BL

Nµ0
=

(1T)(0.30m)

(500turns)(4π × 10−7 Tm
A )

= 477A

c© 2007 John and Gay Stewart, The University of Arkansas 278



25.4. DRAWING THE MAGNETIC FIELD CHAPTER 25. BIOT-SAVART LAW

25.4 Drawing the Magnetic Field

This section takes you through the process of drawing magnetic field maps for system of wires and systems
of permanent magnets. There is an additional feature to these field maps resulting from the non-existence of
magnetic charge.

Magnetic Field Lines Are Closed Curves: Since there is no magnetic charge, mag-
netic field lines are closed curves. Recall that field lines begin and end on charge and
there is no magnetic charge.

The best way to learn to draw a magnetic field map is from an example.

Example 25.11 Draw the Magnetic Field Lines for Two Parallel Currents
Problem: Two wires are parallel and carry currents of equal magnitude in the same direction. Draw the field
map for this situation.

Solution

(a) Draw Magnetic Field Lines of Individual Wires: The
right-hand rule gives clockwise orientation of magnetic fields
for each wire. There should be the same number of magnetic
field lines for each wire, since they each have the same current.

I I

(b) Connect Crossing Lines of Same Orientation: Where
field lines intersect and have the same clockwise or coun-
terclockwise orientation connect the lines, erase the portion
where the line go in opposite directions and smooth the result.
Work from the outside in until no lines cross.

I I

c© 2007 John and Gay Stewart, The University of Arkansas 279



25.4. DRAWING THE MAGNETIC FIELD CHAPTER 25. BIOT-SAVART LAW

(c) The Completed Magnetic Field Map:

I I

Example 25.12 Draw the Magnetic Field Lines for Two Anti-Parallel Currents.
Problem: Two wires are parallel and carry currents of equal magnitude in opposite directions. Draw the field
map for this situation.

Solution

(a) Draw Magnetic Field Lines of Individual Wires: The
right-hand rule gives clockwise orientation of the magnetic
field for one wire and counterclockwise for the other. There
should be the same number of magnetic field lines for each
wire since they each have the same magnitude of current. The
symbol ⊗ represents current into the page and the symbol ⊙
current out of the page.

I I

(b) Bend Crossing Lines of Opposite Orientation Apart:
Magnetic field lines cannot intersect as drawn above. Where
lines of opposite clockwise or counterclockwise orientation
intersect, bend the lines so that they no longer intersect.

I I
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(c) The Completed Magnetic Field Map:

I I

Example 25.13 Draw the Magnetic Field Lines Inside, Outside, and Near the Ends of
a Solenoid.
Problem: A number of loops are tightly wound to create a long solenoid. Draw the magnetic field lines inside,
outside, and near the ends of the solenoid. Use one line per wire.

Solution

(a) Draw Magnetic Field Lines of Individual Wires: The right-
hand rule gives clockwise orientation of the magnetic field for the
bottom wires and counterclockwise for the top wires. (⊗ = Current
into the page, ⊙ = Current out of the page)

(b) Sum the Magnetic Fields Far Inside and Outside: Using our
technique for infinite wires, bend loops of opposite orientation apart
and combine loops of the same orientation.
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(c) Reason About the Strength of the Field: The field above and
below the solenoid partially cancels. It is weaker than the field inside,
so push the lines outside the solenoid farther from the solenoid. We
would have seen the cancellation if we had included more lines.
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Chapter 26

Computing Magnetic Fields

26.1 Adding Magnetic Fields

Last chapter, we became familiar with the Biot-Savart law and some important magnetic fields. Magnetic
fields add by linear superposition in the same way that electric fields do. To compute the magnetic field at point
P of a complex system of currents, compute the magnetic field of each current at point P and add the fields
vectorially.

Linear Superposition of Magnetic Fields: The magnetic field at some point in space
can be found by adding the magnetic fields contributed at that point by each individual
moving charge.

Example 26.1 Magnetic Field of House Wiring
Problem: House wiring carries a maximum current of 20A. The two conductors in house wiring are about
1/2cm apart. Model this system as two infinite straight conductors parallel to the y-axis. Let one conductor carry
20A in the +ŷ direction through the point x = 0.25cm on the x-axis. Let the other conductor carry 20A in the
−ŷ direction through the point x = −0.25cm on the x-axis.

(a)Compute the magnetic field, ~B+, due to the conductor at x = +0.25cm at a point P at 2cm along
the x-axis.

(b)Compute the magnetic field, ~B−, due to the conductor at x = −0.25cm at a point P at 2cm along
the x-axis.

(c)Compute the total field, ~BP , at point P .

z

 x

y into page

 B−

 B+

r+

r−

I+
I−

Definitions

~Bi ≡ Magnetic Field due to Wire i

Ii ≡ Current i

ri ≡ Distance From Wire to Field Point
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Strategy: Compute the magnetic field of each wire; then, add, using linear superposition.

Solution to Part (a)

(a) Select Right Handed Coordinate System: For x̂ × ŷ = ẑ, +ŷ must be into the page, therefore the
currents are as drawn.
(b) Use the Right Hand Rule for a Wire to Compute the Fields: The field lines of an infinite wire form
circles around the wire. Use the right hand rule for a wire for I+ which flows into the page. Imagine grabbing
the wire with your right hand, with your thumb pointing in the direction of the current. Your fingers curl in the
direction of the magnetic field, which for I+ gives a clockwise field. This field points down at the point P where
we wish to compute the magnetic field, so the magnetic field from I+ points in the −ẑ direction. Repeating the
reasoning for the I− current, gives the direction of the magnetic field of the wire carrying current out of the page
as +ẑ as drawn. B+ is slightly larger than B−, because the I− current is farther away.

(c) Compute ~B+: The distance from I+ to P is 2cm − 0.25cm = 1.75cm. The magnetic field of an infinite
straight wire is

B+ =
µ0I

2πr+
=

(4π × 10−7 Tm
A )(20A)

2π(0.0175m)
= 2.29 × 10−4T

~B+ = −2.29 × 10−4Tẑ

Solution to Part (b)

Compute ~B−: The distance from I− to P is 2cm+0.25cm = 2.25cm. The magnetic field of an infinite straight
wire is

B− =
µ0I

2πr−
=

(4π × 10−7 Tm
A )(20A)

2π(0.0225m)
= 1.78 × 10−4T

~B− = 1.78 × 10−4Tẑ

Solution to Part (c)

Compute the Total Field: By linear superposition, the total field due to the two wires at point P is

~BP = ~B+ + ~B− = −2.29 × 10−4Tẑ + 1.78 × 10−4Tẑ = −0.51 × 10−4Tẑ

Example 26.2 Magnetic Field of Solenoid and Wire
Problem: An infinite straight wire runs through an infinite solenoid. A side and top view is shown below.
Consider the field at point P , a distance d = 1cm from the infinite straight wire, along the axis of the solenoid.
The solenoid has 30 turns of wire over a length of 5cm and a radius of 2cm. The solenoid carries a current of
Isol = 10mA and the infinite straight wire carries a current of I = 2A.

(a)On the side view diagram, draw the magnetic field due to the solenoid only.

(b)At the point P in the top view diagram, draw the magnetic field vector from the solenoid, from the
straight wire, and the total magnetic field vector.

(c)Compute the magnetic field of the solenoid.

(d)Compute the magnetic field of the straight wire at point P .

(e)Compute the total magnetic field at point P .
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 Side View Top View

I

 d

 P  P
 d

I

y

x

Solution to Part (a)

Use the Right Hand Rule for a Wire on any of the solenoid wires to get the direction of the uniform field in the
solenoid.

 Side View Top View

I

 d

 P  P
 d

I

y

x

 BP

 Bwire

 Bsole

 Bwire

Solution to Part (b)

Use the Right Hand Rule for a Wire to get the field of the wire at point P. The field lines are circles about the
current.

Solution to Part (c)

The field of an infinite solenoid is:

~Bsole = nµ0Ix̂ =

(

30

0.05m

)(

4π × 10−7 Tm

A

)

(0.01A)x̂

= 7.54 × 10−6Tx̂.
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Solution to Part (d)

The field of an infinite straight wire is:

~Bwire =
µ0I

2πr
ŷ =

(

4π × 10−7 Tm
A

)

(2A)

2π(0.01m)

= 4 × 10−5Tŷ.

Solution to Part (e)

The total field is the sum of the fields by Linear Superposition.

~BP = ~Bwire + ~Bsole

= 7.54 × 10−6Tx̂ + 4 × 10−5Tŷ

Example 26.3 Finite Current Segment Approximation
Problem: The wire shown below carries a current of 2A in the direction shown. The magnetic field of the wire
at point P is computed using the finite current element approximation. The problem which follows takes you
through the completion of the calculation. The finite current segments are numbered 1 - 6.

(a)The total field at point P due to the six segments is

~BP = ~B1P + ~B2P + ~B3P + ~B4P + ~B5P + ~B6P .

What physical principle allows you to add the fields in this manner?

(b)What is the contribution to the total magnetic field at point P , ~B1P , from the segment 1, between
points A → B?

Because of the symmetry of the problem, the total field is

~BP = 2( ~B1P + ~B2P + ~B3P )

(c)Write the vector ∆~ℓ2 for segment B → C.

(d)Write the vector ~r2P from the center of segment 2, B → C to the point P .

(e)Compute the magnetic field at point P , ~B2P , due to segment 2.

(f)Write the vector ∆~ℓ3 for segment C → D.

(g)Write the vector ~r3P from the center of segment 3, C → D to the point P .

(h)Compute the magnetic field at point P , ~B3P , due to segment 3.

(i)Compute the total magnetic field at point P .
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 0  2cm

 2cm

 4cm

 4cm

 6cm

 6cm

 8cm

 8cm

 10cm  12cm  14cm  16cm

 A  B

 C  D  E

 F  G

 P 1

 2

 3  4

 5

 6

x

y

Solution to Part(a)

The magnetic fields of the individual current elements add because of the principle of linear superposition.

Solution to Part(b)

For segment A → B, the current element I∆~ℓ1 is parallel to r̂1P and therefore the field is zero.

Solution to Part(c)

The vectors ∆~ℓ2, ∆~ℓ3, ~r2P , and ~r3P are drawn on the figure below and can be read directly from the figure.

∆~ℓ2 = (2cm,−2cm, 0)

 0  2cm

 2cm

 4cm

 4cm

 6cm

 6cm

 8cm

 8cm

 10cm  12cm  14cm  16cm

 A  B

 C  D  E

 F  G

 P 1

 2

 3  4

 5

 6

x

y r2P

r3P∆  2 ∆  3
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Solution to Part(d)

The vector ~r2P = (3cm, 1cm, 0) from the diagram.

Solution to Part(e)

The magnetic field from segment 2 is given by the finite element approximation to the Biot-Savart law,

~B2P =
µ0

4π
I
∆~ℓ2 × r̂2P

r2
2P

therefore we need r̂2P and the length r2P . The length of the vector is given by r2P =
√

(3cm)2 + (1cm)2 =√
10cm. The unit vector is by definition

r̂2P =
~r2P

r2P
=

(

3√
10

,
1√
10

, 0

)

The expression for the magnetic field requires the calculation of the cross product,

∆~ℓ2 × r̂2P = (2cmx̂ − 2cmŷ) × (
3√
10

x̂ +
1√
10

ŷ) =
2cm√

10
(x̂ × ŷ) − 6cm√

10
(ŷ × x̂)

Using x̂ × ŷ = ẑ and ŷ × x̂ = −ẑ, this becomes

∆~ℓ2 × r̂2P =
2cm√

10
ẑ +

6cm√
10

ẑ =
8cm√

10
ẑ

Now finish the calculation,

~B2P =
µ0

4π
I
∆~ℓ2 × r̂2P

r2
2P

=
4π × 10−7 Tm

A

4π
(2A)

1

(
√

10 × 10−2m)2
0.08m√

10
ẑ

~B2P = 5.09 × 10−6Tẑ

Solution to Part(f)

∆~ℓ3 = (2cm, 0, 0)

Solution to Part(g)

The vector from the center of segment 3 to the point P is from the diagram ~r3P = 1cmx̂ + 2cmŷ.

Solution to Part(h)

The magnetic field from segment 3 is given by the finite element approximation to the Biot-Savart law,

~B3P =
µ0

4π
I
∆~ℓ3 × r̂3P

r2
3P

therefore we need r̂3P and the length r3P . The length of the vector is given by r3P =
√

(1cm)2 + (2cm)2 =√
5cm. The unit vector is by definition

r̂3P =
~r3P

r3P
=

(

1√
5
,

2√
5
, 0

)

The expression for the magnetic field requires the calculation of the cross product,

∆~ℓ3 × r̂3P = (2cmx̂) × (
1√
5
x̂ +

2√
5
ŷ) =

4cm√
5

(x̂ × ŷ) =
4cm√

5
ẑ

Now finish the calculation,

~B3P =
µ0

4π
I
∆~ℓ3 × r̂3P

r2
3P

=
4π × 10−7 Tm

A

4π
(2A)

1

(
√

5 × 10−2m)2
0.04m√

5
ẑ

~B2P = 7.15 × 10−6Tẑ
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Solution to Part(i)

So by linear superposition,

~BP = 2(0 + 5.06 × 10−6Tẑ + 7.15 × 10−6Tẑ) = 24.42 × 10−6Tẑ

26.2 Arbitrary Currents

26.2.1 Finding Total Magnetic Field for Currents Lying in a Plane

The Biot-Savart law is much more complicated than Coulomb’s law. However, the actual exact calculation of
the magnetic field by integrating the Biot-Savart law over the current will often prove easier than the calculation
of electric fields by integrating Coulomb’s law. Suppose we have a system where both the current and the point
where the field is to be calculated lie in the x-y plane as shown below. The field at the point P or any other
point in the plane is in the ±z direction, because both ~r and d~ℓ are in the plane and the cross-product always
returns a vector perpendicular to both vectors that are crossed.

 I

 P

 y

 x

r

B

This means rather than working with the full vector expression for the Biot-Savart law, we can work with the
magnitude alone, since we already know the direction,

dB0 =
µ0

4π

Idℓ sin θ

r2
10

where θ is measured from d~ℓ to ~r. We do have to be careful of the sign, but this is a lot of progress.

Example 26.4 Compute Magnetic Field of Current-Carrying Wire
Problem: A circle of wire with radius 10cm lying in the x − y plane carries a current I = 10A which flows in
the counterclockwise direction when viewed from the +z side of the plane. Compute the magnetic field at the
origin.

Solution

Strategy: Imagine dividing the wire into small segments (i.e., current elements), use the Biot-Savart Law on
each segment, and then use linear superposition to add up the field contributions of all the segments.
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(a) Divide the Wire into Small Segments: Divide the wire

into small current elements I∆~ℓ, where d~ℓ points along the wire
in the direction of current flow.

x

y

+z Out of Page

I∆
ri0

 B0

(b) Use Linear Superposition: The total magnetic field can be found by adding the fields of the current

elements, ~Bi,
~B0 =

∑

i

~Bi.

(c) Use Biot-Savart Law: The field produced by the individual segment i is in the +ẑ direction by the
right-hand-rule. Its magnitude is given by the Biot-Savart Law

Bi =
µ0

4π

I∆ℓ sin θ

r2
i0

where ~ri0 is the vector from the current element to the origin and θ is the angle between ∆~ℓ and ~ri0. The angle
between these vectors is always θ = 90◦, so sin θ = 1. The distance from the element i to the origin is ri0 = R,
the radius of the circle. Since the field of each segment points in the +ẑ direction,

~Bi =
µ0

4π

I∆ℓ

R2
ẑ

The total field at the origin is

~B0 =

(

∑

i

µ0

4π

I∆ℓ

R2

)

ẑ

(d) Write Sum as Integral: Let ∆ℓ become infinitely short.

~B0 =

(
∫

C

µ0

4π

Idℓ

R2

)

ẑ =

(

µ0

4π

I

R2

∫

C

dℓ

)

ẑ

where the integral is taken around the circle C. The integral of an element of the circle around the circle is just
the circumference of the circle

∫

C
dℓ = 2πR.

~B0 =
µ0

2

I

R
ẑ

or substituting the numbers given in the problem

~B0 = 6.283 × 10−5Tẑ

Magnetic Field of Current Loop at the Origin: The magnitude of the magnetic field
at the origin of a flat circle of wire of radius R that carries current I is

B0 =
µ0

2

I

R
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The magnetic field of a finite current element is an approximation to the exact expression for the field of a
finite wire. It is accurate in the limit where the distance from the wire is large compared to the length of the
segment, which will be the case any time the wire is broken in many segments.

Example 26.5 Magnetic Field of a Short Wire
Problem: A short wire carries current I in the positive x direction. The wire lies along the x axis between the
points x = −L and x = L. Compute the field at the point P at ~rP = (d,R, 0).

Solution

(a) Break the system up into small bits: For a right-handed
coordinate system +z is out of the page. Using the right-hand-
rule and the Biot-Savart law this is also the direction of the mag-
netic field.

x

 y

 i

 P
 R

 d

 BP

θi

riP

∆x

(b) Compute Needed Vectors: The displacement vector from the chunk i to the point P is

~riP = ~rP − ~ri = (d,R, 0) − (xi, 0, 0) = (d − xi, R, 0)

The length of the displacement vector is

riP =
√

(d − xi)2 + R2

(c) Compute the Angle: The angle between the current and the displacement vector for the ith segment, θi,
can be expressed as

sin θi =
R

√

(d − xi)2 + R2

I found this by using sine = opposite/hypotenus on the dashed triangle.
(d) Compute the Field: The total field is the sum of the fields of each segment.

BP =
∑

i

BiP

The field of each segment is given by the Biot-Savart law restricted to the plane.

BP =
∑

i

µ0

4π

I∆x sin θi

r2
iP

=
∑

i

µ0

4π

I∆x

(d − xi)2 + R2

R
√

(d − xi)2 + R2
=

∑

i

µ0

4π

I∆xR

((d − xi)2 + R2)
3
2

(e) Convert the Sum to an Integral and Hope for the Best:

BP =

∫ L

−L

µ0

4π

IRdx

((d − x)2 + R2)
3
2

=
µ0IR

4π

∫ L

−L

dx

((d − x)2 + R2)
3
2
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Integrals.com gives the integral as

∫ L

−L

dx

((d − x)2 + R2)
3
2

= − d − x

R2
√

(d − x)2 + R2

BP =
µ0IR

4π

(

− d − x

R2
√

(d − x)2 + R2

)L

−L

=
µ0I

4πR

(

− d − L
√

(d − L)2 + R2
+

d + L
√

(d + L)2 + R2

)

which is hideous.

With a little trig and a little looking up the right answer, we can re-write the solution to the above problem
as the formula that follows.

Magnetic Field of Wire Seg-
ment : The magnitude of the
magnetic field of a wire seg-
ment is

B =
µ0

4π

I

R
(sin(θ1) + sin(θ2))

where the terms are defined
in the diagram and the direc-
tion of the field is given by the
Right Hand Rule for a Wire.
The distance R is the distance
from the wire to the point
where the field is calculated.

I

R

θ1 θ2

x

y

B

Example 26.6 Field of Short Wire
Problem: A 10cm segment of wire lies along the x-axis with its center at the origin. The wire carries 5A of
current. What is the magnitude of the magnetic field at (5cm, 5cm, 0)? Use the exact result for the field of a
finite wire segment.

Solution

 θ
 θ =0

 2

 P

 5cm -5cm

 1
d  R

 L

Definitions

R = 5cm ≡ Perpendicular Distance to Wire

I = 5A ≡ Current in Wire

θ1 ≡ Angle shown on figure

θ2 = 0 ≡ Other Angle, zero in this problem

B ≡ Magnitude of magnetic field

d ≡ The length of the hypotenuse

L = 10cm ≡ Length of wire

Strategy: Use the formula for the magnetic field of a short wire.
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(a) Use Formula for the Magnetic Field of a Short Wire: The magnetic field of a short wire is given by

B =
µ0I

4πR

(

sin θ1 + sin θ2

)

where θ1 is the angle shown in the figure, θ2 = 0 because of the geometry of the problem, and R is the
perpendicular distance to the wire.
(b) Compute sin θ1: The sin = o

h is opposite over hypotenuse. The length of the hypotenuse is d =√
R2 + L2 =

√

(5cm)2 + (10cm)2 = 11.2cm. The length of the opposite side is L = 10cm, therefore

sin θ1 =
10cm

11.2cm
= 0.893

(c) Substitute and Compute: Substitute the value for sin θ1 into the expression for the magnetic field,

B =
µ0I

4πR
sin θ1 =

(4π × 10−7 Tm
A )(5A)

4π(5cm)
(0.893)

B = 8.9µT

Example 26.7 Magnetic Field of Multiple Segments
Problem: The wire below carries 0.3A to the right of the page. The segment AB extends to −∞ and the
segment CD extends to +∞. The point B is at (a, b) = (−1cm, 0) and the point C is at (0,−2cm). The dark
lines on the grid below are measured in centimeters.

(a)Calculate the magnetic field of segment AB at point P exactly.

(b)Calculate the magnetic field of segment BC at point P in the finite current element approximation.

(c)Calculate the magnetic field of segment BC at point P exactly.

(d)Calculate the magnetic field of segment CD at point P in the infinite wire approximation.

(e)Calculate the magnetic field of segment CD at point P exactly.

 (a, b)

 I
 (c,d)

 (0,0)

 P

 x

 y

 A

 B

 C

 D

Solution to Part (a)

The displacement vector and current element are parallel for segment AB, so the magnetic field at point P is
zero.
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Solution to Part (b)

The vector ∆ℓBC points from the point (a, b) to the point (c, d). This vector is

∆ℓBC = (c − a, d − b) = (1cm,−2cm)

The displacement vector from the center of the segment to the point P is

~rBCP = (0.5cm, 1cm)

The length of this vector is

rBCP =
√

(0.5cm)2 + (1cm)2 =
√

1.25cm = 1.12 × 10−2m

We will need the cross-product

∆~ℓBC × ~rBCP = (1cmx̂ − 2cmŷ) × (0.5cmx̂ + 1cmŷ) = 1cm2x̂ × ŷ − 1cm2ŷ × x̂ = 2cm2ẑ

Use the finite current element approximation to the Biot-Savart Law,

~BBCP =
µ0I

4π

∆~ℓBC × ~rBCP

r3
BCP

=
(4π × 10−7 Tm

A )(0.3A)

4π

2cm2ẑ

(1.12 × 10−2m)3
= 4.27 × 10−6Tẑ

 (a, b)

 I
 (c,d)

 (0,0)

 P

 x

 y

 A

 B

 C

 D

∆  BC

rBCP

Solution to Part (c)

Divide the segment BC into N small pieces. Let the center of the ith piece be (xi, yi). The line from B to C
has the function, yi = d − 2xi. The displacement vector from the segment i to the point P is

~riP = (0, 0) − (xi, yi) = (−xi,−yi) = (−xi,−d + 2xi)

The length of the displacement vector is

riP =
√

x2
i + (−d + 2xi)2

If we divide the segment BC into N pieces, then vector ∆~ℓ for the segment i is ∆~ℓ = ∆~ℓBC/N . The distance
along the x axis from B to C is −a, so N = −a/∆x, and the

∆~ℓ =
∆~ℓBC

N
=

∆x∆~ℓBC

−a
= ∆x(1,−2)
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Compute the cross-product,

∆~ℓ × ~riP = ∆x(1,−2) × (−xi,−d + 2xi) = −d∆xẑ

The total field at P is the sum of the fields of the segments by linear superposition

~BBCP =
∑

i

~BiP

Using the Biot-Savart law for each segment yields

~BBCP =
µ0I

4π

∑

i

∆~ℓ × ~riP

r3
iP

=
µ0I

4π

∑

i

−d∆xẑ

(
√

x2
i + (−d + 2xi)2)3

Convert to an integral

~BBCP = −dµ0Iẑ

4π

∫ 0

a

dx

(
√

x2 + (−d + 2x)2)3

Integrals.com
∫

dx

(
√

x2 + (−d + 2x)2)3
=

−2d + 5x

d2
√

d2 − 4dx + 5x2

~BBCP = −dµ0Iẑ

4π

( −2d + 5x

d2
√

d2 − 4dx + 5x2

)0

a

= −dµ0Iẑ

4π

(−2

d2
− −2d + 5a

d2
√

d2 − 4da + 5a2

)

=
µ0Iẑ

4πd

(

2 +
−2d + 5a√

d2 − 4da + 5a2

)

Work out the messy bit, a = −1cm and d = −2cm

−2d + 5a√
d2 − 4da + 5a2

=
−2(−2cm) + 5(−1cm)

√

(−2cm)2 − 4(−2cm)(−1cm) + 5(−1cm)2
= −1

~BBCP =
µ0Iẑ

4πd

(

2 + (−1)

)

=
µ0Iẑ

4πd

~BBCP =
µ0Iẑ

4πd
=

(4π × 10−7 Tm
A )(0.3A)ẑ

4π(0.02m)
= 1.5 × 10−6Tẑ

A substantial correction.

Solution to Part (d)

The distance from the segment CD to the point P is 2cm. The field points out of the page at point P by the
right-hand rule for a wire. The field of an infinite straight wire,

~BCDP =
µ0I

2πr
ẑ =

(4π × 10−7 Tm
A )(0.3A)

2π(0.02m)
ẑ = 3 × 10−6Tẑ

Solution to Part (e)

Divide the wire into small segments. An element of the segment i is ∆~ℓ = ∆xx̂. The location of the ith segment
is (xi, d) and the displacement vector from the ith segment to the point P is

~riP = (0, 0) − (xi, d) = (−xi,−d)

The length of the displacement vector is

riP =
√

(x2
i + d2)
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Compute the cross-product
∆~ℓ × ~riP = ∆xx̂ × (−xi,−d) = −d∆xẑ

which points out of the page since d is negative. The total field at P is the sum of the segments

~BCDP =
∑

i

~BiP

Applying the Biot-Savart law to each segment

~BCDP =
µ0I

4π

∑

i

∆~ℓ × ~riP

r3
iP

=
µ0I

4π

∑

i

−d∆xẑ

(
√

(x2
i + d2))3

= −µ0Idẑ

4π

∑

i

∆x

(
√

(x2
i + d2))3

Convert to an integral

~BCDP = −µ0Idẑ

4π

∫ ∞

0

dx

(
√

(x2 + d2))3

Integrals.com
∫

dx

(
√

(x2 + d2))3
=

x

d2
√

x2 + d2

~BCDP = −µ0Idẑ

4π

(

x

d2
√

x2 + d2

)∞

0

= −µ0Idẑ

4πd2
= −µ0Iẑ

4πd

Exactly half the infinite wire result, which was what we were expecting.

~BCDP = 1.5 × 10−6Tẑ
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26.2.2 Magnetic Field of Special Current Distributions

Magnetic Field of Current Loop: The magnetic field at a point P along the axis of
a loop of wire of radius R carrying current I is

~B = Bxx̂ =
µ0

4π

2πR2I

(x2 + R2)3/2
x̂

where x is the distance of point P from the center of the loop.

x

y

z

I

P

R
B

r

Example 26.8 Magnetic Field of Ring along Axis
Problem: A ring of radius 5cm carrying a 10A current lies in the x − y plane and is centered at the origin.
The current flows counterclockwise when viewed from the +z side of the plane. Compute the magnetic field at
(0, 0, 2cm).

Solution

The magnetic field of a loop of current of radius R = 5cm, a distance z = 2cm along the axis of the loop is given
by

B =
µ0

4π

2πR2I

(z2 + R2)
3
2

=
(4π × 10−7 Tm

A )

4π

2π(5cm)2(10A)

((2cm)2 + (5cm)2)
3
2

B = 1 × 10−4T

By the right hand rule, the magnetic field at (0, 0, 2cm) is in the +ẑ direction, therefore

~B = 1 × 10−4Tẑ
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Field of a Finite Solenoid: The magnetic field at a point a distance a from one end
and b from the other end along the central axis of a finite solenoid with n turns per
unit length carrying current I and having radius R is

| ~B| =
1

2
µ0nI

(

b√
b2 + R2

+
a√

a2 + R2

)

.

Avoid the trap – n is not the number of turns of wire wrapped around the solenoid!
It’s the number of turns divided by the length that they are wrapped along the solenoid
cylinder.

y

b

x

a

PR
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Chapter 27

Ampere’s Law

27.1 Ampere’s Law

27.1.1 Ampere’s Law

Gauss’ law was a reformulation of Coulomb’s law that allowed the calculation of the electric charge if given
the electric field. Ampere’s law is a reformulation of the Biot-Savart law that allows the calculation of the current
if the magnetic field is known.

Ampere’s Law: The current, IC through the surface bounded by a closed curve, C, is
related to the line integral of the magnetic field B along the curve by

∮

~B · d~l = µ0IC ,

where IC is positive if the thumb of the right hand is pointed in the direction of the
current and the fingers curl in the direction of d~l.

27.1.2 How to Tackle Ampere’s Law

Ampere’s law has a flavor similar to Gauss’s law, but the details are different. Just as we use Gauss’s law to
find ~E fields for very symmetric charge distributions, we use Ampere’s law to find ~B fields for symmetric current
distributions. With Gauss’s law, we imagined Gaussian surfaces that were the boundaries of volumes, and we
talked about how much charge was enclosed within that volume. Knowing how much charge was enclosed within
the volume told us what the ~E field was on the Gaussian surface.

With Ampere’s law we focus on curves that are the boundaries of open surfaces. The line integral of ~B around
the curve,

∮

~B · d~l, is related to how much electric current cuts through the surface, which has the curve as its
boundary. The curve used in Ampere’s law is called an Amperian path. The surface bounded by the Amperian
path can be any open surface at all—it doesn’t necessarily have to be flat, and the Amperian path need not lie
in a plane, either. Just as we have avoided “doing” integrals in Gauss’s law, we’ll also write down the answer to
these Ampere’s law integrals without doing any integrating. The strategy in Ampere’s law problems is to imagine
an appropriate Amperian path, use a sketch of the setup in order to find how much current cuts through the area
inside the path, and then use the symmetry to write down the value of the integral and solve for ~B.
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Amperian paths

Surfaces bounded by the Amperian paths

There are some algebraic sign conventions we need to learn re-
garding Ampere’s Law. Recall when we used Gauss’s Law, we
defined electric flux to be positive or negative depending upon
whether the ~E field was directed out of or into the volume en-
closed by the Gaussian surface. With Ampere’s Law we need to
give the current I a plus or minus sign depending on which way it
goes through the cross section of the Amperian path. This choice
is tied to the sense (think ‘clockwise’ vs. ‘counterclockwise’) in
which we traverse the Amperian path in doing the line integral
of ~B around the path. The traditional “right-handed” choice is
shown in this figure – the positive direction through the path’s
cross section is the direction your right thumb points when your
right fingers curl around the path in the direction you traverse the
path.

n

n

Just to confirm your understanding, here’s another picture showing directions taken around the Amperian path

and the corresponding algebraic signs of the current flowing through the cross section of the path.

I I

I is positive I is negative

Direction of traversal

of Amperian path
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Maxwell’s Equations Part II: Maxwell’s Equations and the Lorentz force as introduced
to this point are:

Maxwell’s Equations

Gauss’ Law
∫

S
( ~E · n̂)dA = Qenclosed

ǫ0

No Magnetic Monopoles
∫

S
( ~B · n̂)dA = 0

Faraday’s Law (Independence of Path)
∮

C
~E · d~ℓ = 0 when there are no

changing magnetic fields.

Ampere’s Law
∮

C
~B · d~ℓ = µ0IC when there are no changing electric fields.

Lorentz Force

~F = q ~E No Magnetic Fields

27.1.3 Using Ampere’s Law to Find Current in a Field Map

Qualitatively, Ampere’s Law means that if you can find a closed
path where the magnetic field generally points along the path,
then there is a net currently flowing through the surface bounded
by the path. This means we can use Ampere’s law to find currents
in a magnetic field map. In the figure to the right, the magnetic
field points mostly in the same direction as the path, so there is
a current passing though the surface bounded by the path. The
direction of the current can be found by the right-hand rule for
a wire, which now we can recognize as the sign convention for
Ampere’s law.

 Amperian Path

 Magnetic Field
 Current

Example 27.1 Ampere’s Law Applied to Non-Symmetric Field
Problem: The figure to the right shows an Amperian
path(dashed) and a vector diagram of a magnetic field. Select
the one of the following that is most true.

Select One of the Following:

(a) There is no current flowing in the region. (b) There is
a current flowing in the region around the Amperian path. (c)
There is current flowing through the gray surface which is bounded
by the Amperian path. (d) Cannot tell because Ampere’s law
only applies to cylindrical systems.
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Solution

There is current flowing through the gray surface which is bounded by the Amperian path. Since the field points
generally in the direction d~ℓ, the integral

∮

C

~B · d~ℓ = µ0I 6= 0

so a current flows through the surface bounded by the curve.

27.2 Cylindrical Systems

27.2.1 Ampere’s Law in Cylindrical Systems

Ampere’s law is a law of the universe. It applies in all cases where there are no changing magnetic fields.
It is only useful for calculation in a few systems: solenoids and systems with cylindrical symmetry. This is the
same situation we had with Gauss’ law. All of the calculations you will be asked to do with Ampere’s law are for
systems with cylindrical symmetry; generally, it is for systems that look something like a co-axial cable. Since we
will use the “right-hand rule for a wire” to find the direction of the field, your drawing is an important part of
fully reporting the field.

Example 27.2 Drawing Magnetic Fields for Cylindrical Geometry
Problem: Two concentric cylinders carry current in opposite directions. The inner cylinder has 1.0mA flowing
out of the page, the outer cylinder has 4.0mA flowing in the opposite direction. Draw the field map exterior to
the conductors.

Solution

(a) Draw the Conductors: Draw the conductors, label the regions.

  I

 II

 III

 IV
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(b) Draw Currents: Draw the currents using ⊗ for current into the
page and ⊙ for current out of the page. Select a number of ⊙ and
⊗ proportional to the current. Select the current in the inner cylinder
1.0mA to be 2 ⊙, giving 8 ⊗ flowing in the outer cylinder.

 I

 II

 III

 IV

(c) Draw Fields: Use Right-Hand Rule for a wire on the total current
passing through the surface bounded by the Amperian path in each
region to determine the direction of the field. The field lines will be
closed circles. In region I and II the total current enclosed is out of
the paper, so the field is counterclockwise. Somewhere in region III,
the total current enclosed is zero and the field changes orientation. In
region IV , the total current enclosed is into the paper, so the direction
of the field is clockwise. We do not draw the field in region I and III
because we have not been asked to calculate the field in these regions.

Magnetic Field Lines

Example 27.3 Ampere’s Law for Cylindrical Conductors
Problem: Two concentric cylinders carry current in opposite directions. The inner cylinder has 1.0mA flowing
out of the page, the outer cylinder has 4.0mA flowing in the opposite direction. Calculate the magnetic field
between the cylinders and outside both cylinders.

Solution

Magnetic Field Lines
Amperian Path

 I

 II
 III

 IV

Definitions

Bi ≡ Magnitude of Magnetic Field in Region i

d~l ≡ Element of length pointing along path

IC ≡ Current enclosed by path

~r ≡ Radius of Path

Ii = 1.0mA ≡ Current through the inner conductor

Io = 4.0mA ≡ Current through the outer conductor

III ≡ Total Current enclosed in Region II

IIV ≡ Total Current enclosed in Region IV
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Strategy: Argue that the field is constant along a circular path. Use Ampere’s Law and divide by the length of
the path to get the field, then use Right-Hand Rule for a Wire to get direction of B.
(a) Draw Good Figure: The diagram was drawn in Example 27.2 Drawing Magnetic Fields for Cylindrical
Geometry. The problem only asks for the field in Regions II and IV . Draw a sample Amperian path on the
diagram.
(b) Apply Ampere’s Law: Apply Ampere’s Law to a circular path. The current, IC , through the surface
bounded by a closed curve, C, is related to the integral of the magnetic field B along the curve by

∮

~B · d~l = µ0IC .

Since ~B is constant and parallel to every d~l in the path, we can write Ampere’s Law for this situation as

B

∮

dl = µ0IC

The integral in this case is always the circumference of the Amperian loop, 2πr, so the magnitude is given by

B =
µ0IC

2πr

and the direction is found by using the right-hand rule on the net current enclosed.
(c) Apply Ampere’s Law the Region II: Apply Ampere’s Law to a circular Amperian path in region II. Use
the right-hand rule for Ampere’s law to select out-of the page as the positive direction for current. The current
passing through the surface bounded by an Amperian path in region II is

IC = Ii = 1.0mA

where Ii is the current flowing in the central conductor. Using the form of Ampere’s Law specialized to the
symmetry in Region II,

~BII =
µ0Ii

2πr
counterclockwise

where the direction can be deduced from the field map or from the direction of the Amperian path and the positive
current direction.
(d) Apply Ampere’s Law in Region IV: Apply Ampere’s Law to a circular Amperian path in region IV . The
total current flowing through the surface bounded by the Amperian path is

IIV = Ii − Io = −3.0mA.

where out-of the page represents positive current. Outside of the cylinders, in Region IV , the negative sign of
the enclosed current indicates that the direction of the magnetic field is opposite to that in Region II. Applying
Ampere’s Law gives

~BIV =
µ0(Ii − Io)

2πr
counterclockwise

or since Io > Ii

~BIV =
µ0(Io − Ii)

2πr
clockwise

Example 27.4 Cylindrical Tube Ampere’s Law Problem
Problem: A infinite straight hollow conducting tube has inner radius 6cm and outer radius 8cm. It carries a
current 5A out of the paper distributed uniformly in the tube. Compute the magnetic field everywhere. This will
include drawing the magnetic field to indicate the direction of the field.

Solution
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I

II

III

Magnetic Field
Amperian Path

Definitions

Bi ≡ Magnitude of Magnetic Field in Region i

d~l ≡ Element of length pointing along path

IC ≡ Current enclosed by path

~r ≡ Radius of Path

I ≡ Current in Tube

Atube ≡ Total Cross-Sectional Area of Tube

Aenclosed ≡ Cross-Sectional Area enclosed by Amperian Path

rinner ≡ Inner Radius of Tube

router ≡ Outer Radius of Tube

Strategy: Argue field constant along circular path. Use Ampere’s Law and divide by the length of the path to
get field, then use Right Hand Rule for a Wire to get direction of B. Compute the current enclosed in the tube
as the ratio of the enclosed area to the total area.
(a) Specialize Ampere’s Law for Cylindrical Symmetry: A sample Amperian path is drawn on the figure, by
symmetry the field must point along the path. The current, IC , through a surface bounded by the closed curve,
C, is related to the integral of the magnetic field B along the curve by

∮

~B · d~l = µ0IC .

Since the magnitude of ~B is constant and the field is parallel to ~l, we can write Ampere’s Law for this situation
as

B

∮

dl = µ0IC

The integral in this case is always the circumference of the Amperian loop, 2πr, so the magnitude is given by

B =
µ0IC

2πr

and the direction by the right-hand rule using the net current enclosed.
(b) Apply Ampere’s Law to Region I: In region I, the total current encircled by any Amperian path is zero,
so the magnetic field is zero.

~BI = 0

(c) Apply Ampere’s Law the Region II: The total current encircled by an Amperian path of radius r through
region II changes as the radius of the path changes. The total current flowing through the conductor is I. The
fraction of this current encircled by the Amperian path is

IC = I
Aenclosed

Atube

where Aenclosed is the cross-sectional area enclosed by the Amperian path and Atube is total cross-sectional area
of the conducting tube. The two areas are Atube = πr2

outer − πr2
inner and Aenclosed = πr2 − πr2

inner, therefore

IC = I
πr2 − πr2

inner

πr2
outer − πr2

inner
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Substituting this value into the expression for Ampere’s Law appropriate for this symmetry allows the calculation
of the magnetic field:

~BII =
µ0I

2πr

r2 − r2
inner

r2
outer − r2

inner

counterclockwise

The direction of the field is found by pointing the thumb of your right hand in the direction of the current, then
your fingers curl in the direction of the field, that is by applying the Right Hand Rule for a wire to the tube.
(d) Apply General Ampere’s Law the Region III: The total current encircled by an Amperian path in Region
III is IC = I = 5A. Substituting this value into Ampere’s Law yields

~BIII =
µ0I

2πr
counterclockwise

The direction of the field the same as BII because the direction of the total enclosed current in the same.

27.3 Planar Systems

We can also guess the shape of the field for systems with planar symmetry.

Example 27.5 Magnetic Field of Current Sheet
Problem: This problem takes you through the process of calculating the magnetic field of a uniform sheet of
current drawn below. Imagine a current flowing in a piece of sheet metal. A current per unit length λ = I/L
flows out of the sheet as drawn. L is the width of the sheet through which the current is flowing.

(a)Using figure (b) and the fact that symmetry implies the field is uniform and parallel to the current
sheet, draw the magnetic field of the sheet. I have modelled the sheet as a collection of parallel wires
to help you figure the direction of the field.

(b)The appropriate Amperian path is drawn in figure (a). Write the general form of Ampere’s law and
break up the integral along the four parts of the path. The integral along the path from b to c and
from d to a can be discarded. Why?

(c)Let the distance from a to b (and from c to d) be ℓ. By symmetry the field must have an equal
magnitude on the two parts. Do the integral and report the formula for the magnetic field of a sheet
of current.

(d)Use your formula. If 20A flows down a sheet that is 2m wide, calculate the magnetic field near the
sheet.

 (a) Infinite Sheet of Current (b) Sheet Modelled as a Collection of Wires

 Region I

 Region II

 a  b

 c d

Solution to Part (a)
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Using the right hand rule for a wire and the information given in
the problem the field is as drawn.

Solution to Part (b)

Ampere’s law states
∫

C

~B · d~ℓ = µ0Ienc

∫

C

~B · d~ℓ =

∫ b

a

~B · d~ℓ +

∫ c

b

~B · d~ℓ +

∫ d

c

~B · d~ℓ +

∫ a

d

~B · d~ℓ = µ0Ienc

The b,c and d,a segments are zero because ~B is perpendicular to d~ℓ so, ~B · d~ℓ = 0.

Solution to Part (c)

∫

C

~B · d~ℓ =

∫ b

a

~B · d~ℓ +

∫ d

c

~B · d~ℓ = µ0Ienc

The magnetic field is constant along both paths and parallel to the path

∫ b

a

~B · d~ℓ =

∫ b

a

Bdℓ = B

∫ b

a

dℓ = Bℓ

So
2Bℓ = µ0Ienc

The current passing through the path is λℓ

2Bℓ = µ0Ienc = µ0λℓ

B =
µ0λ

2

Solution to Part (d)

The current density λ = 20A/2m = 10A/m

B =
µ0λ

2
=

(4π × 10−7 Tm
A )(10A/m)

2
= 2π × 10−6T
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27.4 Solenoids

Ampere’s law can also be used to calculate the field of an infinite solenoid. The reasoning is very different
from the cylindrical case. Unless one counts the toriodal solenoid, which is a solenoid wrapped in a circle, there
are not any other systems where the reasoning applies. You are required to understand the argument, but I will
not ask you to reproduce it.

Example 27.6 Ampere’s Law for Solenoid
Problem: An infinite solenoid carries a current I and is wound with n turns per unit length. Calculate the
magnetic field of the solenoid.

Solution

Strategy: Choose Amperian Path along axis of solenoid, argue that only the inside leg contributes, then use
Ampere’s Law.

(a) Draw the System and Select the Path: The figure with
the directions of the currents labelled is shown to the right. The
Amperian path is drawn.

a b

cd

 Amperian Path

(b) Use Symmetry: The solenoid is cylindrically symmetric about its axis, so the field must have that symmetry.
There are a few possibilities: (1) Radially outward like the electric field of an infinite line charge, (2) Circles around
the axis of the solenoid like the magnetic field of a long wire running down the axis of the solenoid, or (3) Straight

lines parallel to the axis with field strength that depends only on the distance from the axis, ~B = B(r)x̂ where x̂
is the direction of the axis. The first possibility implies a line of magnetic charge down the axis and therefore is
physically impossible. The second possibility violates Ampere’s law. If an Amperian path were to follow one of
the field circles there would be a net field around the path, but no current flowing through the path. Therefore
the field lines must be straight lines parallel to the axis of the solenoid of the form ~B = B(r)x̂ .
(c) Reason Field Along Path: The field is perpendicular to the Amperian Path from b to c and from d to a, so
~B · d~l = 0. What about the leg c to d? Choose an Amperian path where the leg c to d is at infinity. Infinitely far
from the solenoid all the current in the solenoid appears to be flowing at the axis. Since each element of current
flowing in one direction has an equal and opposite current flowing in the opposite direction, their magnetic fields
cancel if we are far enough from the solenoid and the field at infinity is zero. Therefore the contribution of leg c
to d is zero.
(d) Compute Current Encircled: If the length of a to b is L, then the current enclosed by the path is IC = nLI.
Since n is the number of turns per unit length, nL is the number of times the wire passes through the surface.
If this is multiplied by the current, the total current through the Amperian path is found IC = nLI.
(e) Use Ampere’s Law: The current, IC , through a closed curve, C, is related to the integral of the magnetic
field B along the curve by

∮

~B · d~l = µ0IC

therefore
BabL = µ0IC = µ0nLI
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Bab = nµ0I

Exactly what we expected.
(f) Apply Right-Hand Rule for Wire: Use the Right-Hand Rule for a Wire to get the direction of the field.
Grab one of the wires with your right hand so your thumb points in the direction of current flow. The tips of your
fingers inside the solenoid point in the direction of the field inside. This is because the field inside must add up
from the individual elements of current.

We actually found this result directly from the Biot-Savart law last chapter by first finding the field of a ring,
then integrating to get the field of the finite solenoid, then letting the solenoid length go to infinity. This was
profoundly easier.

Example 27.7 Field of a Toroidal Solenoid
Problem: This problem takes you through the steps needed to
calculate the magnetic field of a toroidal solenoid from Ampere’s
Law. A toroidal solenoid is a solenoid wrapped on a circular tube.
The appropriate Amperian path is drawn as a dashed line in the
figure to the right. The radius of the path is r. Assume the circles
with radii a, b, and r are all in the same plane. The solenoid is
wound with N turns.

(a)If current I flows through the wire, what is Ienc?

(b)Evaluate
∮

~B · d~ℓ. The reasoning is the same as for
cylindrical symmetry.

(c)Calculate the magnetic field of a toroidal solenoid.

a

b

r

Solution to Part (a)

We know the number of wires intersecting the surface bounded by the Amperian path, so we simply multiply this
by I to get the encircled current:

Ienc = NI

Solution to Part (b)

By the symmetry of the situation, the field inside the solenoid will always be perpendicular to the radial vector,
which makes it parallel to our Amperian path, and the field will have constant magnitude along the path. The
direction of the field will of course depend on the direction of the current, but if we assume that the line integral
is evaluated in the same direction as the field. Since the field and the path are always parallel, ~B · d~ℓ = Bdℓ, by
the properties of the dot product of parallel vectors. Since the field is constant on the path, we can re-write the
integral part of Ampere’s law as

∮

~B · d~ℓ =

∮

Bdℓ = B

∮

dℓ

The remaining integral is just the length of the path, the circumference of the circle, 2πr

∮

~B · d~ℓ = B(2πr)

Solution to Part (c)

Ampere’s Law is
∮

~B · d~ℓ = µ0Ienc
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and from this relationship we can now solve for the field.

B(2πr) = µ0NI

B =
µ0NI

2πr

This equation tells us that, unlike an infinite straight solenoid, the field inside a toroidal solenoid is not constant,
but is stronger closer to the inner surface. The field outside the solenoid is zero.
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Chapter 28

Magnetic Force

28.1 Magnetic Force

28.1.1 The Lorentz Force

Magnetic fields exert forces on moving charges. The moving charges can either be in the form of a single
moving electric charge or a current of charges in a wire. A magnetic field exerts no force on a stationary charged
particle. The amount of force exerted on moving charge is given by the Lorentz Force, which we will write for a
moving charge and for a current.

Magnetic Force on a Stationary Charge: The magnetic force on an unmoving charge
is always zero.

Magnetic Force on a Moving Charge (Lorentz Force): The magnetic force, ~F , on

a particle with charge q and velocity ~v moving through magnetic field ~B is

~F = q~v × ~B.

Remember × represents a vector cross product—this makes the magnetic force on the
particle perpendicular to both the particle’s velocity and to the magnetic field it is
moving through. Magnetic forces act “sideways,” to put it crudely.

Force on a Small Segment of Current-Carrying Wire: A current-carrying wire feels
a magnetic force if it is in a magnetic field. The force, dF on a small segment depends
on the current I through the wire, the segment’s length and orientation d~ℓ, and the
magnetic field ~B

dF = Id~ℓ × ~B.

If the magnetic field is constant over the length of a straight wire, the total force on
the wire is

F = I~ℓ × ~B,

where |~ℓ| is the length of the wire. Note: The vector ~ℓ points in the direction of the
current flow.

To apply the Lorentz force, we have to work out the same kind of cross products we have been using throughout
magnetic fields. Both + and − charges feel the magnetic force, so we have to be careful of the sign of q when
evaluating the direction of the Lorentz force.

Example 28.1 Electron Shot into Magnetic Field
Problem: An electron is shot along the x-axis in the +x direction with velocity |~v| = 1 × 106 m

s . A uniform
magnetic field, B = 0.25Tẑ fills the region x > 0.

(a)Draw a diagram showing the force and field.
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(b)Compute the force on the particle as it enters the magnetic field.

Solution to Part(a)

The force on the particle as it enters the field is given by the
Lorentz Force,

~F = q~v × ~B

where q is the charge, ~v is the velocity, and ~B is the magnetic
field. Using the right hand rule, pointing your fingers in the
direction of the velocity, and curling in the direction of the
field, we find that the vector ~v × ~B points in the −ŷ direc-
tion. Therefore, since an electron has a negative charge, the
magnetic force points in the +y direction.

x

y

z out of page

v Fm

Solution to Part(b)

Since ~v is perpendicular to ~B as the electron enters the field,

|~Fm| = |q|vB = (1.6 × 10−19C)(1 × 106 m

s
)(0.25T) = 4 × 10−14N

~Fm = 4 × 10−14Nŷ

Example 28.2 Compute the Force on a Current-Carrying Wire in a Uniform Magnetic
Field
Problem: A current of 3.0A moves through a wire that is 12cm long. The current flows in the +x̂ direction. The
wire is in a region of constant magnetic field of 4.0× 10−7T in the +ẑ direction. Compute the force, magnitude
and direction, on the wire due to the magnetic field.

Solution
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x

y

z

I wire

B

Definitions

~B = 4.0 × 10−7Tẑ ≡ Constant, uniform magnetic field

I = 3.0A ≡ Current

ℓ = 12cm ≡ Length of current-carrying wire

~Fm ≡ Magnetic force on the wire

(a) Use Lorentz Force: The force on the wire is given by the Lorentz Force

~Fm = I~l × ~B.

(b) Use Right-Hand Rule: Use RHR to get the direction of the force, point the fingers in ~l direction and curl

them in the ~B direction, giving the direction of ~Fm as the −ŷ direction.
(c) Use Magnitude Form of Cross Product:

Fm = IℓB sin θ

The angle between the current and the magnetic field is 90◦, and sin 90◦ = 1, so

Fm = IℓB

Fm = 3.0A · 12 × 10−2m · 4.0 × 10−7T = 1.4 × 10−7N

Fm = 1.4 × 10−7N in the -y direction

Example 28.3 Figuring Out the Direction of the Field You Need
Problem: A 10cm wire carrying a current of 6A in the +ŷ direction lies parallel to the y-axis.

(a)What direction must a uniform magnetic field be in to generate a force on the wire in the +z
direction?

(b)What must the magnitude of this field be to exert a force of 0.10N on the wire segment?

Solution to Part(a)

The force on a current carrying wire is
~F = I~ℓ × ~B,

so for a force in the +ẑ direction if ~ℓ = |ℓ|ŷ, we need ẑ = ŷ × B̂. Executing the right hand rule gives B̂ = −x̂.

Solution to Part(b)
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The magnitude of the force for the geometry given above is F = ILB, so

B =
F

IL
=

0.1N

(6A)(10cm)
= 0.166T

With the Lorentz force, we complete the set of equations that govern the motion of charged particles in static
electromagnetic fields.

Maxwell’s Equations: Maxwell’s Equations and the Lorentz force as introduced to this
point are:

Maxwell’s Equations

Gauss’ Law
∫

S
( ~E · n̂)dA = Qenclosed

ǫ0

No Magnetic Monopoles
∫

S
( ~B · n̂)dA = 0

Faraday’s Law (Independence of Path)
∮

C
~E · d~ℓ = 0 when there are no

changing magnetic fields.

Ampere’s Law
∮

C
~B · d~ℓ = µ0IC when there are no changing electric fields.

Lorentz Force

~F = q ~E + q~v × ~B

28.1.2 Consequences of the Form of the Lorentz Force

The cross product relation between the velocity and the force makes the direction of motion and the force
always perpendicular. This leads to the following two unusual properties of motion in a magnetic field:

Magnetic Field Does No Work: The magnetic force is always perpendicular to the
velocity, ~F = q~v × ~B, which implies that the magnetic force is always perpendicular
to ∆~x, the particle’s displacement during a short time interval ∆t . Therefore, the
magnetic field does no work, since the dot product of perpendicular vectors is always
zero—

W = ~F · ∆~x = 0.

Speed Does Not Change when Travelling in a Magnetic Field: If the magnetic
field does no work, then it does not change the energy of the particle. If the energy
stays the same, the magnitude of the velocity cannot change since the kinetic energy is
1
2mv2. Therefore, a particle moving in a magnetic field changes direction, but moves
at a constant speed.

We will use these properties later in the section to describe the motion of a charged particle in a uniform
magnetic field. First, though let’s consider the motion of charged particle where the magnetic force is balanced
by some other force.

Example 28.4 Force on Proton in Particle Accelerator
Problem: A proton travels parallel to the ground in a particle accelerator. If it travels at 5% of the speed of
light, what direction and how strong must a magnetic field be to balance gravity and keep it travelling parallel to
the ground.

Solution
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Earth

v

Fg

Fm

Definitions

q = 1.6 × 10−19C ≡ Charge of Proton

~Fm ≡ Magnetic Force

~Fg ≡ Gravitational Force

~v = 0.05c ≡ Velocity of Proton

m = 1.67 × 10−27kg ≡ Mass of Proton

~B ≡ Magnetic Field to Balance Gravity

Strategy: Use Newton’s Second Law to balance the gravitational force against the Lorentz Force.
(a) Write Force Balance: The problem states the magnetic force balances the gravitational force, so

~Fg + ~Fm = 0,

and therefore
|~Fg| = |~Fm|.

The direction of the gravitational force is downward and therefore the direction of the magnetic force is upward.
(b) Compute Gravitational Force: The magnitude of the force of gravity is Fg = mg.

(c) Compute Magnetic Force: The magnetic force on the proton is ~F = q~v × ~B. We will select a magnetic
field perpendicular to the velocity, so the magnitude of the magnetic field is Fm = qvB.
(d) Compute the Magnetic Field: Balance the magnetic and gravitational force,

Fm = qvB = mg = Fg.

Solving for B gives,

B =
mg

qv
=

(1.67 × 10−27kg)(9.81m
s )

(1.6 × 10−19C)(0.05)(3 × 108 m
s )

| ~B| = 6.83 × 10−15T

(e) The rest of the answer, Reason About Direction: Using the right hand rule, point your fingers in
the direction of the velocity and your thumb in the direction you want the force to point—upward. With these
directions, your fingers curl into the page. Therefore, since the charge is positive, the magnetic field points into
the page.

28.1.3 Newton’s Third Law and the Magnetic Force

I have repeatedly stated that Newton’s Third Law is true because momentum does not leak out of the universe.
Bizarrely, which seems to be the only way we do things in magnetism, Newton’s III law is not true for magnetic
forces on isolated charges as the following example demonstrates. This is a disaster because if we leave this
unresolved the universe would rapidly grind to a halt. The answer lies a bit beyond the scope of the class. The
momentum in temporarily stored in the electromagnetic fields themselves.

Example 28.5 Mutual Lorentz Forces
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Problem: The figure below shows two systems of two charges,
Q1 and Q2. The arrows indicate the velocity.

(a)Draw the direction of ~B12 and ~B21 for each system.
Indicate if the field is zero.

(b)Draw the direction of ~F12 and ~F21, the Lorentz forces
the elements exert on each other.

(c)For which system, if any, does Newton’s Third Law
apply?

(a) (b)

v

Q1

Q2

v

v

v
Q1

Q2

Solution to Part (a)

The direction of the fields can be found by using ~v × r̂ from the Biot-Savart Law and the Right Hand Rule. The
proper directions are shown in the figure. Since the displacement vector from Q2 to Q1 in figure (b) is parallel to
the velocity of Q2, the field at Q1 due to Q2 is zero.

(a) (b)

v

v

v v

F12

F21

 B12

 B21

 B21 = 0

F12
 B12

Q1

Q2

Q1

Q2

Solution to Part (b)

The Lorentz force is
~F = q~v × ~B

so the direction is found with the right hand rule. In figure (b), Q2 produces zero magnetic field at Q1, so at the
instant in time represented by the figure, the motion of Q1 does not interact with the field of Q2, so there is no
resulting Lorentz force. See the figure above.

Solution to Part (c)

Newton’s Third Law does not apply to magnetic forces. It seems to apply in the figure (a), but this is a coincidence.
It clearly does not apply in figure (b).

28.2 Circular Motion in a Uniform Magnetic Field

The Lorentz Force Law, when applied to a particle moving in a uniform(constant) magnetic field, produces
some interesting behavior. The speed of the particle is constant, but the acceleration is always at right angles
to the direction of motion, so the particle keeps turning. If the field is uniform, the magnitude of the force is
constant, and the particle moves in a circle. The acceleration of any object moving in a circular orbit is given by
the centripetal acceleration:
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Centripetal Acceleration: The acceleration of a particle moving in a circle at constant
speed is

ac =
v2

r

directed inward toward the center of motion, where v is the speed of the particle and r
is the radius of its circular orbit.

The acceleration is related to the magnetic force by Newton’s Second Law

~Fm = m~ac = m
v2

r
inward

If the particle enters the field perpendicular to it, then the orbit is a closed circle; otherwise, the orbit is a spiral.
The Lorentz force is

~F = q~v × ~B

and since the velocity is perpendicular to the magnetic field, the magnitude of the Lorentz Force is

Fm = qvB.

Using this in Newton’s Second Law gives

Fm = qvB = mac = m
v2

r

We can solve this expression for the charge, the velocity, or the radius of the orbit. This means we can take a
picture of a charged particle moving in a magnetic field and if we know the charge, we can use the radius to tell
us the velocity.

Circular Motion in a Magnetic Field: A particle with charge q, mass m, and velocity
v will travel in a circular orbit in a uniform magnetic field with strength B. The radius
of the orbit, r, satisfies:

qvB = m
v2

r

Example 28.6 Motion of Charged Particle in Constant Magnetic Field
Problem: A proton maintains a velocity of 0.50 × 103 m

s when it enters a region of constant magnetic field of
magnitude 4.0× 10−5T. The initial velocity of the proton (+ŷ) is perpendicular to the direction of the magnetic
field, (+ẑ).

(a)What is the proton’s trajectory (include the direction and radius)?

(b)What is the period of the orbit?

m,q>0

 rv

Fm

Definitions

B = 4.0 × 10−5T ≡ Magnitude of Magnetic Field

q = 1.602 × 10−19C ≡ Charge of proton

m = 1.67 × 10−27kg ≡ Mass of proton

r ≡ Radius of Circle

v0 = 0.50 × 103 m

s
ŷ ≡ Initial velocity of particle

Fm ≡ Magnetic Force

ar ≡ Centripetal Acceleration

Fr ≡ Centripetal Force

T ≡ Period of Orbit

c© 2007 John and Gay Stewart, The University of Arkansas 317



28.3. FORCES ON CURRENTS AND WIRES CHAPTER 28. MAGNETIC FORCE

Strategy: Use Newton’s Second Law to relate the magnetic force to the centripetal acceleration and solve for
the radius.

Solution to Part (a)

(a) Use Right Hand Rule to Get Direction of Circle: Using the RHR on the q~v0 × ~B factor in the Lorentz
force gives an initial force to the right and a trajectory as drawn in the diagram.
(b) Use Formula For Centripetal Acceleration: The acceleration of a particle moving in a circle at a constant
speed is

ac =
v2

r

and is directed toward the center of the circle.
(c) Compute Magnetic Force: The force on a particle moving in a field is given by the Lorentz force,

~Fm = q~v × ~B.

Since ~v is perpendicular to ~B and we’ve already picked the correct orientation of the circle, Fm = qvB will be
directed inward, toward the center of the trajectory circle.
(d) Apply Newton’s Second Law: The force on the proton equals the mass times the acceleration, by Newton’s
Second Law. Since both the force and acceleration are directed toward the center of the trajectory circle, we can
write

Fm = mac = m
v2

r

qvB =
mv2

r

r =
mv

qB

(e) Substitute and Solve:

r =
1.67 × 10−27kg · 0.50 × 103 m

s

1.602 × 10−19C · 4.0 × 10−5T
= 0.13m

Solution to Part (b)

Compute the Period: Since magnetic fields do no work, the velocity is constant (Conservation of Energy).
The period is the time it takes the proton to go around the circle, so it’s the circumference of the circle divided
by the magnitude of the proton’s velocity,

T =
2πr

v0
=

2π(0.13m)

0.5 × 103m/s
= 1.6 × 10−3s.

For calculating the period, it doesn’t matter which way the particle is going around the circle. Periods aren’t
negative, so we always just use the magnitude of the velocity.

28.3 Forces on Currents and Wires

Now place a moving charge in the magnetic field and reason about the direction of the force. As with electric
fields, we do not include the field of the object that is feeling the force in the field maps we use to compute the
force. We start with the simplest cases first, a charged particle shot into a magnetic field and an infinite wire in
the field of other infinite straight wires. In both cases, the object feels a uniform force or force per unit length
which we can work out through the Lorentz force.

Example 28.7 Force on a Particle Travelling in a Field
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Problem: For the wires to the left, which carry the same
magnitude of current:

(a)Draw the magnetic field with three lines per wire.

(b)Draw the direction of the magnetic force on an
electron shot into the page at point P .

Current Into Page Current Out of Page

P

Solution to Part (a)

Draw the magnetic field using techniques from Section 29.1
Drawing and Reading Magnetic Field Maps.

Current Into Page Current Out of Page

P

Fm
B

Solution to Part (b)

From the drawing, the magnetic field points to the left at P . The Lorentz force is ~Fm = q~v × ~B. Using the right
hand rule, ~v × ~B points upward at point P , so ~Fm points downward since q < 0 for an electron.

Example 28.8 Force on Proton in a Magnetic Field
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Problem: For the configuration of wires at the right, all are
carrying the same magnitude of current:

(a)Draw the magnetic field map.

(b)A proton is shot into the page at point P .
Sketch the direction of the force on the proton.

Current Into Page Current Out of Page

P

Solution to Part(a)

The magnetic field map is shown to the right. The directions
of the field lines were found using the right hand rule.

 Current Into Page  Current Out of Page

 F B

Solution to Part(b)

Use ~F = q~v × ~B and the right hand rule to get the force drawn in the figure above.
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Magnetic Dipoles

29.1 Drawing and Reading Magnetic Field Maps

29.1.1 Drawing the Magnetic Field of a Magnetic Dipole

All magnetic fields of localized charge distributions (the infinite wire is not localized) are dipole fields. Just
as an electric dipole field was characterized by an electric dipole moment vector, ~p, a magnetic dipole field is
characterized by a magnetic dipole moment vector, ~m.

Shape of Magnetic Dipole Field and Dipole Moment Vector: The shape of a
magnetic dipole field resulting from an object with magnetic dipole moment vector ~m
is shown below. The vector ~m will also be called the magnetic moment.

m
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An Isolated Loop of Current Produces a Dipole Field: The field of a ring of wire
which carries current I in the direction drawn is shown below. To find the direction of
the magnetic moment use the right hand rule for the wire to figure out the direction of
the field interior to the loop, the magnetic dipole moment points in the same direction
as the field in the center of the loop.

 I

m

Definition of Dipole Moment:
The magnetic dipole moment, ~m,
of a flat current loop is

~m = NIAn̂

where I is the current in the loop,
A is the cross-sectional area in-
side the loop, N is the number
of turns, and n̂ is a unit vector
normal to the surface enclosed by
the loop with orientation chosen so
that when the thumb of your right
hand points in the direction of n̂,
your fingers curl in the direction I
flows.

I

m

Dipole of a Permanent Magnet: The magnetic dipole moment of a permanent
magnet points from the South Pole to the North Pole through the magnet.
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Field Map of a Permanent Magnet: The field of a permanent magnet is drawn
below. Note that the field lines close within the magnet.

 N

 S

m

Example 29.1 Drawing Magnetic Field Lines of a Permanent Magnet
Problem: Two identical permanent magnets are placed near each other so that the long sides are parallel and
the North pole end of the first is beside the South pole end of the second. Draw the magnetic field map for this
configuration.

Solution

Strategy: Draw field stubs for North and South poles, then connect the field lines both outside and inside the
magnet.

(a) Draw the Field in the Magnet: Draw field line stubs
leaving the North pole end of the magnet and entering South
pole end of the magnet. The lines should extend through the
magnet.

N

S

S

N
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(b) Draw Field Map: Using the same technique used to draw
electric field lines for fixed charge, draw a field map outside of
the magnets by connecting and smoothly bending the line stubs.
Connect the field lines between the magnets since the field lines
point in the same general direction where they would (but cannot)
intersect. N

S

S

N

29.1.2 Quantitative Form of Magnetic Dipole Field

As I write down the quantitative form of the magnetic field of a point dipole, the field far from the dipole,
you should experience deja vu. All the formulas for magnetic dipoles will be the same as the formulas for electric
dipoles. So this is something you already have experience with.

Magnetic Dipole Field: The full mathematical form of the field of a magnetic dipole,
~m is:

~B(~r) =
µ0

4π

3r̂(~m · r̂) − ~m

r3
.

This is the field of a point dipole or the field far from a system with a magnetic dipole
moment.

If we chose the +ŷ direction as the direction of the magnetic dipole, we can calculate the magnetic field along
the x and y axis.

Simplified Magnetic Dipole Fields: The expression above for the magnetic dipole
field can be simplified if a direction for the dipole moment is chosen and only the
strength of the field along the axes is computed. If ~m = mŷ, then along the +ŷ axis,

~B(0, y, 0) =
µ0

4π

2mŷ

|y|3 .

and along the x-axis

~B(x, 0, 0) = −µ0

4π

mŷ

|x|3

29.2 Behavior of Dipoles in Magnetic Fields

29.2.1 Rotation of Magnetic Moments in a Magnetic Field

We have experience with the behavior of magnetic moments in magnetic fields—a compass needle is a perma-
nent magnet with the North pole in the direction the needle points—therefore, a compass needle has a magnetic
moment. The needle points in the direction of the moment. A compass needle comes to rest pointing in the
direction of the magnetic field lines, so a magnetic moment will rotate toward the direction of field and will come
to rest (if there are losses in the system) pointing in the direction of the field.
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Magnetic Dipole will Rotate to Align
with Magnetic Field: A magnet dipole will
rotate so the dipole moment points in the
same direction as the field line. A compass
needle is a magnetic dipole which rotates to
align with the earth’s magnetic field which
points to the north.

 rotation

p

The magnetic moment of a permanent magnet depends on the shape and material of the magnet and must
be measured in most cases.

Example 29.2 Rotation of Permanent Magnet in Magnetic Field
Problem: In the configuration of infinite straight wires and
magnets at the right, the wires carry the same magnitude of
current. The magnet rotates about its center whose location
is fixed.

(a)Draw the magnetic field lines.

(b)Draw the orientation about its fixed center so
that the magnet would come to rest, as if there
was some force which slowed its motion.

Current Into Page Current Out of Page

N
 

S
 

Solution to Part(a)

Draw the magnetic field using the techniques of last chapter.

Solution to Part(b)

The magnet will rotate so the north pole points along the field, that is so the magnetic moment aligns with the
field.
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Current Into Page Current Out of Page

N
 

S
 

Current Into Page Current Out of Page

N 

S 

 (a)  (b)

m

A coil carrying a current also has a magnetic moment. You can use the right-hand rule for magnetic moments
to determine the direction of the moment OR use the right-hand rule for a wire to figure out what the field looks
like, then figure out what direction the magnetic moment must point to produce the field.

Example 29.3 Rotation of Coil in Magnetic Field
Problem: The coil of wire in the figure is seen from the
side. It carries current in the direction shown. The wire
carries current into the page.

(a)Draw the magnetic field map of the wire ignoring
the field of the coil.

(b)Indicate the initial direction of rotation of the
coil.

Current Into Page Current Out of Page

Wire

Coil

Solution to Part (a)

Use the right-hand rule to figure out the direction of the magnetic field. Point the thumb along the direction of
the current and the fingers will curl in the direction of the field.

Solution to Part(b)
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Initially, the coil will rotate so the magnetic moment rotates
toward alignment with the magnetic field of the wire.

 Current Into Page  Current Out of Page

 Wire

m

F1
F2

B1

B2

29.2.2 Torque and Potential Energy of a Magnetic Dipole

We can do better than just predicting the direction of rotation of the current loop or permanent magnet, we
can compute the torque on it. Torque, represented by the vector, ~τ , is defined as

~τ =
∑

~ri × ~Fi

where ~ri is a vector pointing from the center of mass of an object (or the point where it is pivoted) to the point

where the force ~Fi is applied. If an object has net torque applied to it, its speed of rotation will increase. If an
object is not rotating, then the net torque on the object is zero.

Torque on a Magnetic Moment in Magnetic Field: The torque on an object with
magnetic moment ~m from a magnetic field, ~B, is

~τ = ~m × ~B.

Direction of Rotation Due to Torque : If you grab the torque vector with your right
hand and point your thumb along the vector, your fingers will curl in the direction that
the object is angularly accelerated, or in the direction that it would rotate if it started
from rest.

Since an external agent has to exert a torque to rotate a magnet in a magnetic field away from its equilibrium
position, the magnet’s potential energy changes as it is rotated. The form of the magnetic potential energy is
very similar to the electric potential energy of a dipole in an electric field.

Magnetic Potential Energy of a Dipole: The potential energy, U , of a dipole with
dipole moment ~m in a magnetic field ~B is

U = −~m · ~B

First, let’s do something that does not require us to understand torque mechanically just to get our feet wet.

Example 29.4 Torque on a Current Loop
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Problem: A uniform magnetic field ~B = 0.5Tẑ fills space.
A loop makes an angle of θ = 120◦ to the field. The loop is
a circle with radius 15cm carrying a current of 100mA with
orientation as shown in the diagram.

(a)What is the magnitude of the magnetic moment
of the loop?

(b)What is the torque on the loop?

(c)Sketch the direction of rotation.

x
Side view of 
loop.

z

θ

B

Solution to Part(a)

The magnetic moment of a current loop is defined as ~m = NIAn̂ where N is the number of turns, n̂ is the
normal, I is the current, and A = πr2 is the area of the loop with radius r. Substituting gives,

|~m| = (1)(0.1A)(π)(0.15m)2 = 0.0071Am2

Solution to Part(b)

The direction of the magnetic moment is normal to the loop, n̂, as shown below. The direction is found by curling
your fingers in the direction of the current, using your right hand. Your thumb will point in the direction of the
normal. From the diagram below, you can see the normal makes an angle of θn = 120◦ + 90◦ = 210◦ with the
field. The torque on a current loop is given by ~τ = ~m× ~B. Using the right hand rule, the direction of the torque
is into the page, which is the −ŷ direction. The magnitude of the torque is

τ = mB sin θn = (0.0071Am2)(0.5T)(sin(210◦)) = 0.0018Nm

Solution to Part(c)

The rotation is shown to the right.

x
Side view of 

loop.

z

Direction

of

Rotation

n

θ

B

Now, let’s use the magnetic torque to do something, like lift a weight.
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Example 29.5 Torque on a Current Loop
Problem: A square (side length d = 10cm) coil of wire with 50 turns of wire carries a current of I = 2A. The
coil’s normal is perpendicular to a magnetic field of strength B = 0.1T directed parallel to the Earth’s surface.
How much mass must be attached to one end of the coil to prevent it from rotating?

Solution

 x

z

 y into page

M

 Current

loop

 mass

pivot m

r

B

Fg

Definitions

~m ≡ Magnetic Moment of Loop

I ≡ Current in loop

M ≡ Mass of Object hung from Loop

~Fg ≡ Force of Gravity

~τg ≡ Torque Due to Gravity

~τm ≡ Torque Due to Magnetic Field

N = 50 ≡ Number of Turns of Wire

Strategy: Balance the torque due to gravity against the torque applied by the hanging weight.
(a) Compute the Magnetic Moment of the Loop: The magnitude of the magnetic moment of a current loop
is the current multiplied by the area. The direction of the magnetic moment is found by curling your fingers in
the direction of current and your thumb points in the direction of the moment. Therefore, the magnetic moment
of our current loop is

~m = NId2(−ẑ).

(b) Compute the Torque Due to the Magnetic Field: The torque due to a magnetic field, ~B = Bx̂ is

τm = ~m × ~B = NId2(−ẑ) × (Bx̂) = −NIBd2ŷ

using the right-hand rule. The torque points out of the page, so the loop would tend to rotate in the direction
that your fingers curl, if your thumb points in the direction of the torque—counterclockwise. (Notice that this

will always give you the same direction as the shortest distance from ~m to ~B.) This rotation is balanced by a
mass hanging from the loop.
(c) Compute the Torque Due to Gravity: The vector from the center of the loop to the edge is ~r = d

2 x̂ and

the force of gravity is ~Fg = −Mgẑ, so the torque due to gravity is

~τg = ~r × ~Fg =
d

2
x̂ × (−Mgẑ) =

dMg

2
ŷ

using the right-hand rule.
(d) Balance the Torques: If the loop does not rotate, then the total torque is zero so

~τg + ~τm = 0 =
dMg

2
ŷ − NIBd2ŷ

Solve for M ,

M =
2NdIB

g
=

2(50)(0.1m)(2A)(0.1T)

9.81m
s2

= 0.2kg

which is pretty good.
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29.2.3 Motion of Dipole in Non-Uniform Field

The first part of this section dealt with the rotation of magnetic dipoles in a magnetic field. You all observed
this as you let the red and green lab magnets rotate in their stands and saw that their poles and thus the magnetic
moments aligned.

Equilibrium Alignment of Magnetic Mo-
ments: In equilibrium, the magnetic mo-
ments of a set of permanent magnets point
in the same direction. In this orientation,
the moments are said to align.  S  N  S  N

mm

You also saw that one magnet attracted another magnet, if their poles were aligned. The magnets repelled if the
poles were anti-aligned. Torque was discussed first, because it is actually the primary (highest order) effect of a
magnetic field on a dipole. Unless the field is non-uniform, there is no magnetic force on a dipole.

Uniform Magnetic Field Exerts Zero Net Force on a Magnetic Dipole: If the
magnetic field is uniform and the same at all points in space, the net magnetic force on
a magnetic moment is zero.

Therefore, if we are discussing the repulsion or attraction of magnetic moments, we are discussing non-uniform
fields. Our experience with the attraction or repulsion of permanent magnets can be used to predict the behavior
of magnetic moments in non-uniform fields. Recall:

Aligned Magnets Attract: If the magnetic
moments of permanent magnets are aligned,
the magnets attract one another.

 S  N  S  N
F F

mm

Anti-aligned Dipoles Repel: If the
magnetic moments are anti-aligned
(point in opposite directions) the mo-
ments repel.  S  N  S N

F

mm

F

With these rules in mind, all we have to do to understand the motion of a dipole in a magnetic field is to replace
one of the magnets with the field it produces.
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Aligned Dipole is Attracted to Region of Stronger Field: If the magnetic moment
of a permanent magnet or coil points in the same direction as the magnetic field, it will
feel a force toward increasing magnetic field strength as shown in figure (a) below. One
can deduce this by imagining a permanent magnet producing, as shown in figure (b),
the field and using the fact that like poles repel/unlike poles attract.

 S  N  S  N

 Figure (a)  Figure (b)

 S  N

mm

F F

Anti-aligned Dipole Feels Force Toward a Weaker Field: If the magnetic moment
of a permanent magnet or coil points in the opposite direction to the magnetic field, it
will feel a force toward decreasing magnetic field strength, as shown in figure (a) below.
This can be deduced by imagining a permanent magnet that could produce the field,
figure (b), and then using the properties of magnets.

 S N  S N S  N

 Figure (a)  Figure (b)

mm

F F

Example 29.6 Floating Bar Magnets
Problem: Two cylindrical bar magnets are placed in a tube that prevents them from rotating. The tube points
vertically upward. What orientation must the dipoles of the permanent magnets have, so that one magnet floats
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above the other?

Solution

For two permanent magnets to repel, the moments must anti-
align. So for the magnetic force, ~Fm, to balance the gravitational
force, ~Fg on the top magnet, the poles of the magnet must be as
shown or both reversed so the two North poles are together.

 S

 N

 S

 N

Fg

Fm

Example 29.7 Force of Current Loop on Magnet
Problem: A current loop carries current in the direction shown
to the right. What is the direction of the force exerted by the
magnetic field of the loop on the permanent magnet?

 N

 S

Solution
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(a) Use either the right hand rule for a wire or the magnetic
moment of the current loop to figure out the direction of the
field. The magnetic moment of the permanent magnet points
in the opposite direction of the magnetic field (at the magnet);
therefore, the magnet is repelled from the region of strongest field
and is pushed toward weaker fields. The force, therefore, points
upward.

 N

 S

F

m

(b) A usual, we can also deduce the direction of the force by
imagining the field was produced by a permanent magnet as shown
to the right and using the fact that a north pole will repel a north
pole.

 N

 S

 N

 S

F

m

The magnitude of the force is given by an expression similar to the one used to find the force an electric field
exerts on an electric dipole.

Force of Magnetic Field on a Magnetic Dipole: The net force on a magnetic dipole
with dipole moment ~m in a magnetic field that points in the ŷ direction, ~B = B(y)ŷ,
is

Fnet = m
dB

dy
(cos θ)

where θ is the angle between the dipole moment vector and the y axis.
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Magnetic Materials

30.1 Introduction to Magnetic Materials

30.1.1 Magnetic Response of Materials

We know that the north end of a magnet is attracted to the south
end of another magnet. We also know that a magnet will stick to
a non-magnetic refrigerator, so the magnet must induce a mag-
netic moment on the refrigerator in the orientation drawn. If the
magnetic moment induced on the refrigerator was in the opposite
orientation, the magnet would be repelled from the refrigerator.

  S N

refrigerator

 S N

It seems reasonable that the total magnetic moment of either a permanent magnet or the temporary magnetic

moment of the refrigerator depends on the size of the magnet or the amount of the refrigerator that is magnetized.
Since the total magnetic moment of the material, ~m, depends on the amount of material, it makes sense to define
a magnetic moment density.

Magnetization: The magnetization density or simply the magnetization, ~M , of a
material is the magnetic dipole moment per unit volume,

~M =
~m

V

where ~m is the magnetic moment of the material and V is its volume.

If we have a large volume of a material that has a magnetization ~M and we are far from the ends of the
material the total magnetic field in the material is:

Field of a Magnetized Material without Applied Field: If there is not an applied
field, in the interior far from the surface of a material with magnetization ~M the mag-
netic field is

~B = µ0
~M

The above is the case for a permanent magnet; it has a magnetization without applying an external magnetic
field. If we place any material in an external field, there will be a magnetic response producing a magnetization
~M . The field due to this magnetization must be added to the external field to yield the total field in the material.
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Magnetic Field in Material in an External Field: The magnetic field, ~B, in a material
with magnetization ~M in an external applied field ~B0 is

~B = ~B0 + µ0
~M

We will find that for some materials the magnetization is in the same direction as the applied field and therefore
the total field is greater than the applied field. For some materials, the magnetization is in the opposite direction
as the applied field and the total field in the magnet is lower than the applied field. For materials with a weak
magnetic response (what we will call paramagnetic and diamagnetic materials) there is an approximately linear
relation between the magnetization and the applied field at low applied fields.

Magnetic Susceptibility: For many materials the magnetization, ~M , is proportional
to the applied field, ~B0, the proportionality constant is the magnetic susceptibility, χm,

~M = χm

~B0

µ0

Relation Between Applied Field and Total Field for Linear Magnetic Materials: If
a magnetic material has a linear relation between the applied field and the magnetization,
that is if χm is constant, then the total field is related to the applied field by

~B = ~B0 + µ ~M = ~B0 + χm
~B0 = (1 + χm) ~B0 = Km

~B0

where Km = 1 + χm is called the relative permeability of the material.

From the above we can see the effect of a linear magnetic material is to increase the magnetic field by a factor
of Km. The analogous but opposite the effect of a linear dielectric material where the applied electric field is
deceased by a factor of κ. Km is the magnetic analogue of the electric κ. Unlike the dielectric constant, it is
possible for Km < 1, so a magnetic material can either increase or decrease the magnetic field.

Permeability and Permittivity of a Material: We have been working with the per-
mittivity of free space, ε0, and the permeability of free space µ0. It is common practice
to use the permeability of a material as µ = Kmµ0 and the permittivity of the material
as ǫ = κε0.

30.1.2 Paramagnetism and Diamagnetism

For most materials, the magnetic response of the material is very small compared to the applied field and χm

is constant for reasonable fields. The magnetic susceptibility, χm, can be either positive or negative. If χm > 0,
the induced dipole moment is in the same direction as the field and the material is said to be paramagnetic. If
χm < 0 the induced dipole is opposite the direction of the field and the material is said to be diamagnetic.

Type Direction of Moment Example χm

Paramagnetic same Uranium 66 × 10−5

Paramagnetic same Platinum 26 × 10−5

Paramagnetic same Aluminum 2.2 × 10−5

Paramagnetic same Sodium 0.72 × 10−5

Paramagnetic same Oxygen 0.19 × 10−5

Diamagnetic opposite Bismuth −16.6 × 10−5

Diamagnetic opposite Silver −2.6 × 10−5

Diamagnetic opposite Diamond −2.1 × 10−5

Diamagnetic opposite Lead −1.8 × 10−5

Diamagnetic opposite Copper −1.0 × 10−5

Diamagnetic opposite Superconductor −1

For all normal paramagnetic and diamagnetic materials the effect is so small that it is difficult to observe.
The value of χm is so small that when we tested copper and aluminum in lab we saw no magnetic response. A
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permanent magnet will slightly attract a paramagnet and slightly repel a diamagnet. A superconductor is a perfect
diamagnet, Km = 1 + χm = 1 + (−1) = 0 and reduces the magnetic field in its interior to zero. Therefore,
a superconductor is strongly repelled from a permanent magnet which is why a superconductor floats over a
permanent magnet.

30.2 Ferromagnetism

30.2.1 Ferromagnetism

Both diamagnetism and paramagnetism are small effects and can be understood in terms of the behavior of
individual atoms. Ferromagnetism is an effect involving many atoms and in certain materials is a gigantic effect.
Ferromagnetism arises when the atomic magnetic moments on different atoms tend to align with one another.
This produces large regions involving billions of aligned moments called domains. When a field is applied, the
domains align producing a large magnetization. This magnetization remains after the field is removed, producing
a permanent magnet. Ferromagnetism occurs in only a few materials; iron, nickel, cobalt, and rare earth elements
like gadolinium and dysprosium.
We can represent the process of magnetizing and then de-
magnetizing a ferromagnet by the curve to the right. The curve
plots the applied field Bapp against the resulting field in the ma-
terial B. The material starts out at point (a) where there is zero
applied field. As Bapp increases the magnetic field in the material
rapidly increases. The slope of the curve at point a is the ini-
tial relative permeability, Km0 = B/Bapp. In ferromagnets, Km0

ranges from 200 to 10, 000, so we get a lot of field in the ferromag-
net for a small applied field. As the applied field is increased, the
field in the magnet increases with a maximum slope of the curve
between point (a) and (b) that ranges up to Km = 1, 000, 000.
The magnetic field in the material continues to increase until all
the domains are aligned. When this happens the magnet is said
to be saturated, and the magnetic field can no longer increased
by increasing magnetization. Saturation happens at point (b).

B

 a

 b

 saturation

 c

 d

Br

Bs

Br Bapp

If we then start to turn off the applied field at the point (b), the magnetization decreases until the applied
field is zero at point (c). There is still a magnet field at the point (c), called the remnant magnetic field Br.
This is the magnetic field of the ferromagnet acting like a permanent magnet. The ferromagnet does not return
to its state of zero field when the applied field is removed. It remembers a field has been applied, it remembers
its history. The curve captures this memory of history and is called a hystereses curve. To erase this remnant
magnetization, apply a field in the opposite direction until at point (d), the magnetic field drops to zero. The
field we have to apply to remove the remnant magnetic field is called the coercive force, Bc. The coercive force
is naturally not a force but a magnetic field.

The table below reports the magnetic properties of some important ferromagnetic materials. Note how small
the coercive force, Bc, is compared to the remnant magnetization and how large the relative permeabilities are.
This gives you an idea of how large a magnetic field you can produce for a small applied field.

Material Km0 Km maximum Br Bs Bc

Iron Commercial 99.9%Fe 250 6000 1.3T 2.16T 8.8 × 10−5T
Iron Pure 99.9%Fe 10,000 100,00 1.3T 2.16T 1.0 × 10−6T

Permalloy 4,000 100,000 0.7T 1.05T 5 × 10−5T
Superpermalloy 100,000 1,000,000 0.7T 0.79T 1.88 × 10−7T
Cobalt 99% pure 70 250 0.5T
Nickel 99% pure 110 600 0.4T

Mu-metal 50,000 200,000

Mu-metal is a material used for magnetic shielding. As you can see in the table for iron the ferromagnetic
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properties of a material are very sensitive to the way the material is processed, which accounts for the difference
between pure iron and commercial iron.

Example 30.1 Iron in a Magnetic Field
Problem: A field of 1 × 10−5T is applied to a bar of commercial iron, calculate the resulting magnetic field in
the iron.

Solution

The field is much less than Bc so we can use the initial Km = Km0 = 250, therefore the field is B = KmB0 =
(250)(1 × 10−5T) = 250 × 10−5T

30.2.2 Commercial Magnetic Materials

The properties you want in a ferromagnet depends on what you want to use it for. If you want a ferromagnet
to deliver magnetic flux somewhere or to act as a magnetic shield as we will investigate next section, you want
a high relative permeability, Km, but you do not want the material to stay magnetized after the external field
is removed, so you want a low remnant field, Br. For a permanent magnet, all you care about is the remnant
magnetic field, the field that remains when the external field is removed. Commercial permanent magnets are
usually made out of one of the materials in the following table:

Type Br M
Neodymium Iron Boron(NdFeB) 1.28T 1.02 × 106A/m

Samarium Cobalt(SmCo) 1.05T 0.36 × 106A/m
Alnico - Aluminum Nickel Cobalt(AlNiCo) 1.25T 0.995 × 106A/m

Ceramic 0.39T 0.310 × 106A/m

The first two, NdFeB and SmCo, are called Rare Earth magnets. All these magnets are weird mixes of the
elements given. The red and green lab magnets were Alnico and the small powerful nickel covered magnets were
NdFeB. Unfortunately, the properties of magnetic materials depend greatly on the details of the manufacturing
process and for the precise properties of a commercial permanent magnet you have to consult the manufacturer.
There are naturally a number of other engineering parameters involved in the selection of the correct material
to use for an engineering application; the coercive force, the field required to de-magnetize the material and the
energy deposited in the magnet in a full magnetization cycle.

Example 30.2 Magnetic Field of Permanent Magnet
Problem: Some of the magnets we used to build speakers were Neodymium Iron Boron (NdFeB) and were
cylinders with radius r = 0.5cm and height h = 1mm.

Compute the magnitude of the magnetic field at a distance of 5cm along the axis of dipole.

Solution

(a) Compute the Magnetic Moment: The magnetic moment is the magnetization density multiplied by the
volume

m = MV = πr2hM = π(0.005m)2(0.001m)(1.02 × 106A/m) = 0.08Am2

(b) Compute the Magnetic Field: Far from the magnet, we can use the field of a point dipole. If the y axis
is the axis of the dipole, along the axis of a point dipole,

B(0, y, 0) =
µ0

4π

2m

|y|3 =
4π × 10−7 Tm

A

4π

2(0.08Am2)

(0.05m)3
= 1.28 × 10−4T

Example 30.3 Torque on Two Permanent Magnets
Problem: Two cylindrical Samarium Cobalt permanent magnets are 5cm apart. The magnets have radius 0.5cm
and height 1mm. Compute the magnitude of the maximum torque one magnet can exert on one another.
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Solution

(a) Compute the Magnetic Moment: The magnetization
density of Samarium Cobalt is M = 0.36 × 106A/m. The total
magnetic moment is the magnetization density multiplied by the
volume

m = MV = Mπr2h = (0.36 × 106A/m)π(0.005m)20.001m

= 0.0283Am2

m

m

(b) Compute the Magnetic Field: The magnetic field of a dipole is strongest in the direction of the dipole
moment. The magnitude of the magnetic field of a dipole at a distance y along its axis is

B =
µ0

4π

2m

|y|3 =
(4π × 10−7 Tm

A )

4π

2(0.0283Am2)

|0.05m|3 = 4.52 × 10−5T

(c) Compute Maximum Torque: The torque a magnetic field exerts on a dipole is given by τ = ~m× ~B. The
maximum torque occurs when the magnetic moment is at right angles to the field. This occurs for the orientation
drawn above. At maximum torque, the magnitude of the torque is

|~τ | = mB = (0.0283Am2)(4.52 × 10−5T) = 1.28 × 10−6Nm
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Chapter 31

Faraday’s Law

So far we know how to work with systems where the electric or magnetic fields are constant. It would be
natural to assume this would let us work with fields which are changing, by simply recalculating with the new
currents or charges. Unfortunately, the universe is not that simple—changing fields cause additional effects.

31.1 Electromotive Force

31.1.1 Electromotive Force

Electromotive force is the work per unit charge to move a positive test charge along some path, usually in an
electric circuit. When we were dealing with static charges, we called electromotive force “electric potential”. For
moving charges or changing magnetic fields, that is no longer appropriate for reasons we will not go into. For
our purposes, however, electromotive force behaves just like electric potential, in that if we connect a voltmeter
across two points where there is an electromotive force between the points, we will read a voltage between the
points. The electromotive force is the work done per unit charge as a charge is moved along a path C,

emf =
W

q
=

1

q

∫

C

~F · d~ℓ =
1

q

∫

C

(q ~E + q~v × ~B) · d~ℓ =

∫

C

~E · d~ℓ +

∫

C

~v × ~B · d~ℓ

where d~ℓ points along the path C and ~v is the velocity of the path. The first term,
∫

C
~E · d~ℓ, is the emf that

results from a net electric field along the path and is the negative of the potential difference if the field is generated
by static charges. For static charges, if the path is closed this term is always zero because of independence of
path. Changing magnetic fields can make this term non-zero for a closed path. The term,

∫

C
~v × ~B · d~ℓ, is a

result of the path’s motion through the magnetic field and is called the motional emf .

Definition Electromotive Force(EMF): The electromotive force, emf , around a sta-
tionary path, C, is the sum of the electric field along the path,

emf =

∮

C

~E · d~ℓ,

where the integral is taken around the path, ~E is the electric field, and ~ℓ points along
the path. For electric fields due to static electric charges, this integral was always zero
(for example, Kirchhoff’s loop theorem). For paths within changing magnetic fields,
this is no longer the case.
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Definition of Motional Electromotive Force (Motional EMF): An emf can also

result from the motion of a path through a magnetic field. The Lorentz Force ~F =
q~v × ~B would exert a force on a positive charge moving with the path, say in a wire.
The integral of the force per unit charge around the loop in this case is

emf =

∫

C

(~v × ~B) · d~ℓ,

where ~ℓ points along the path.

Example 31.1 EMF for Given Electric Field
Problem: The electric field, shown as the solid lines at the right,
is produced by a changing magnetic field out of the page. Is the
emf around the dashed path positive, negative, or zero?

Solution

The electric field has a component in the opposite direction to the path all around the path, so the electric field
adds along the path, and there is a negative emf around the path.

31.1.2 Drawing the Forces on the Charges in a Moving Wire

Conductors are full of electric charge (so are insulators, but their charge can’t move). Therefore, if we pull
a conductor which does not carry a current through a magnetic field, the electrons and protons that make up
the wire become moving charge and feel a force due to the Lorentz force. The total force is zero, because the
force on the protons is equal and opposite to the force on the electrons. The electrons can move and will move
in response to an applied force. In some situations, which we will investigate this chapter, there is a net work per
unit charge for a closed circuit, and therefore a charge going around the circuit gains energy each time around.
In this case, there is a net emf and a flow of current around the circuit.

When we draw the motional forces, we draw the direction of the force on a positive charge. Remember, the
direction of charge motion, in this case (as you apply the Lorentz force) is the direction that the coil is being
dragged.

Example 31.2 Draw Motionally Induced Magnetic Force
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Problem: A loop of wire is dragged through
a uniform magnetic field in figure (a) and a
magnetic field that is stronger for x > 0 than
for x < 0 in figure (b). Draw the force the
magnetic field exerts on the positive charges
in the wire. Since current is defined as the
flow of positive charge, this is the direction
of the force that drives the current.

B - Out of Page

v

 Figure (a)

v

 Figure (b)

 B weaker  B stronger

Solution

Consider what would happen to a positive charge at a few points in the circuit. The charge can’t get out, so it’s
dragged along with the velocity of the circuit, ~v. The charge, therefore, feels a force ~F = q~v × ~B. In figure (a),
these forces cancel if you take the integral around the loop, so there is no induced EMF—that is no work is done
by the magnetic force as the charge is moved around the loop, so there will be no current. In figure (b), the sum
of the forces around the loop is not zero and there will be a flow of current.

B - Out of Page

v

Magnetic Force

v

 Figure (b)

 B weaker  B stronger

 current

 Figure (a)

31.1.3 Calculating Motional EMF

We can use the definition of motional emf to calculate the voltage we would observe across a moving wire.
If a wire of length L is electrically isolated as shown in figure (a) below, then the electromotive force will do
work on positive charges in the wire causing a region of positive charge to form at one the end of the wire and
a region of negative charge at the other end of the wire. Since the charges have nowhere to go, the electric
field of the separated charge balances the magnetic force, q ~E = q~v × ~B or E = vB. A potential difference
of ∆V = EL = vBL then exists across the wire. If the wire is connected to an electrical circuit (shown as a
resistor), so that a current can flow a voltage (emf) will be observed

emf = N

∫

~v × ~B · d~ℓ = NvBL

where in this case N = 1 and L is the length of the wire in the field.
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 + +

 _ _

 Figure (a)  Figure (b)

Fm

v

Fm

v

V

Example 31.3 Calculate Motional EMF for a Moving Loop
Problem: A square coil of wire 10cm on a side with 100 turns and sides parallel to the coordinate axis moves
in the x − y plane with velocity ~v = 10m

s x̂. Initially, the center of the coil is at the origin. A magnetic field
~B− = −0.2Tẑ for x < 0 and ~B+ = 0.2Tẑ for x > 0 is normal to the coil. The total resistance of the loop is
0.1Ω.

(a)Draw the magnetic force on the positive charges in the coil.

(b)What is the direction of the current flow?

(c)Calculate the emf around the loop.

(d)Calculate the current in the loop.

Solution to Part (a)

Use Lorentz Force: Use ~Fm = q(~v× ~B). A positive charge
moving with the loop feels this force in all regions. The forces
are found using the right hand rule and are drawn as vectors.

x

y

z

y

x

 B−  B+

v

Solution to Part (b)
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The forces on the top and bottom are perpendicular to the wire and can do no work along the direction of the
wire. The forces on the left and right add to produce a clockwise EMF. A + charge has positive work done to it
if it travels around the loop. Therefore a current will flow in the clockwise direction around the loop.

Solution to Part (c)

The electromotive force on the left side of the loop will drive the current in the clockwise direction and has
magnitude

emfleft = N

∫

~v × ~B · d~ℓ = NvBL = (100)(10
m

s
)(0.2T)(10cm) = 20V

The electromotive force on the right side also tends to drive the current in the clockwise direction and has the
same magnitude as the emf on the left side. The total emf is the sum of the two

emf = emfleft + emfright = 2emfleft = 40V

Solution to Part (d)

The current is found using Ohm’s law,

I =
emf

R
=

40V

0.1Ω
= 400A

Example 31.4 EMF Across Car
Problem: Your car is about 4m long, 1.5m wide, and 1.5m tall and you are driving east-west across Missouri
along I-70 at 80mph = 36m

s . For simplicity, assume the earth’s magnetic field points directly north with magnitude
2.2 × 10−5T. Compute the emf you would measure between your bumpers, the driver and passenger car door,
and the roof and bottom of your car.

Solution

The motional emf for a moving conductor in a magnetic field is emf =
∫

C
~v× ~B · d~ℓ. Since the velocity and the

magnetic field are perpendicular, |~v× ~B| = vB. If you are driving to the west, the direction of ~v× ~B is downward.

Therefore, ~v × ~B is perpendicular to a path between the bumpers and to a path between the car doors, so the
emf along these paths is zero. A path from the roof to the floor is parallel to ~v× ~B and the emf along the path
is

emf =

∮

~v × ~B · d~ℓ = vBℓ = (36
m

s
)(2.2 × 10−5T)(1.5m) = 0.0012V = 1.2mV

an observable, but not particularly useful voltage. Do not worry about the sign. You would get the opposite sign
if you assumed you were driving toward the east.

31.2 Magnetic Flux

While working with Gauss’ law, we became familiar with the concept of electric flux. In applying the new
physical law of this chapter, we will need to work with magnetic flux.

Definition of Magnetic Flux: The magnetic flux, φm, through a surface is defined
the same way the electric flux is:

φm = N

∫

S

( ~B · n̂)dA,

where ~B is the magnetic field, S is the surface, n̂ a normal to the surface, and dA an
element of area of the surface, and N is the number of turns. If the magnetic field is
constant, then the magnetic flux is φm = NA( ~B · n̂), where A is the area of the loop.
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Units of Magnetic Flux: Flux is measured in Webers (Wb) where 1Wb = 1Tm2.

You can visualize the magnetic flux through a surface as the number of magnetic field lines passing through
the surface.

Example 31.5 Field through Flat Loop
Problem: Our best UPII lab magnets produce a field of about 0.25T. Compute the magnetic flux due to this
field if the direction of the field is parallel to the normal of a circular loop of wire 1cm in radius.

Solution

The magnetic flux through a loop of wire is φm = NBA, if the field is parallel to the normal of the loop. Since
the number of turns is not given, the number of turns is N = 1. The magnetic field is B = 0.25T, and A = πr2

is the area of the loop. Substituting gives

φm = NBA = NBπr2 = (1)(0.25T)(π)(1cm)2 = 7.9 × 10−5Wb

Example 31.6 Magnetic Flux through a Coil Tipped with Respect to the Field
Problem: A circular coil of wire with 20 turns of wire and radius 20cm has a normal which makes an angle of
20◦ with a uniform magnetic field of magnitude 0.25T. Compute the magnetic flux through the coil.

Solution

If the magnetic field is uniform, the magnetic flux is given by φm = NA~B · n̂, where A = πr2 is the area, N = 20
is the number of turns, and B = 0.25T is the magnetic field. We are given the angle the normal makes with the
field as 20◦, so ~B · n̂ = B cos 20◦. Substituting gives

φm = Nπr2B cos 20◦ = (20)(π)(20cm)2(0.25T) cos 20◦ = 0.6Tm2

Example 31.7 Magnetic Flux Through a Shrinking Loop
Problem: A circular loop of wire has a radius of 12cm at time t = 0. A 4.0µT magnetic field is perpendicular
to the plane of the loop. The radius decreases at a rate of 3.0mm

s .

(a)What is the magnetic flux through the loop as a function of time?

(b)What is the magnetic flux through the loop at t = 2.0s?

dR/dt

Definitions

t ≡ Time in Seconds

N = 1 ≡ Number of Turns

A(t) = πR(t)2 ≡ Area of Loop at Time t

R(0) = 0.12m ≡ Initial Radius

R(t) ≡ Radius at Time t

φm(t) ≡ Magnetic Flux at Time t

dR

dt
= −3.0

mm

s
≡ Rate of Change of Radius

B = 4.0µT ≡ Magnitude of Magnetic Field

Strategy: Compute the flux as a function of time by writing the area as a function of time.
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Solution to Part (a)

(a) Apply the Definition to Magnetic Flux: Since the magnetic field is constant, the flux is φm = N ~B · n̂A.

(b) Compute the Dot Product: The normal to the loop is parallel to the field, so ~B · n̂ = |B| and φm = NBA.
(c) Compute Time Dependent Area: Since the radius is decreasing at 3mm/s,

R(t) = R(0) −
(

dR

dt

)

t.

A(t) = πR2(t) = π

[

R(0) −
(

dR

dt

)

t

]2

(d) Put it All Together:
φm(t) = NBA(t)

φm(t) = πNB

[

R(0) −
(

dR

dt

)

t

]2

φm(t) = π(4.0µT)

[

0.12m −
(

3
mm

s

)

t

]2

Solution to Part (b)

Substitute t = 2.0s and solve.

φm(2.0s) = π(4.0µT)

[

0.12m −
(

3
mm

s

)

2.0s

]2

φm(2s) = 1.63 × 10−7Wb

31.3 Faraday’s Law

31.3.1 Faraday’s and Lenz’ Law

In lab, we saw that when a coil of wire experiences a changing magnetic field, a potential difference is measured
on a voltmeter connected across the coil. There is a general relation between a changing magnetic field and an
electric field. For applications, we use this electric field to drive charge around a circuit, but the electric field is
there even if the circuit isn’t. The general relation between a changing magnetic field and the electric field is
called Faraday’s Law.

Qualitative Statement of Faraday’s Law: If the magnetic flux through a closed path
is changing, there is an emf induced around the path. The faster the flux changes, the
larger the emf . The direction of the induced current is given by Lenz’ law.

Lenz’s Law: The induced emf and induced current are in such a direction as to oppose
change in the magnetic flux.

Changing magnetic flux can be caused by a moving or distorting loop or a changing magnetic field. If the
magnetic field is changing, the emf is caused by an electric field, so a changing magnetic field generates an electric
field.

Example 31.8 How to Make Current in a Loop
Problem: A loop of wire is fixed in space. How can an EMF be induced in the loop?

Solution
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By Faraday’s Law, an emf can be induced in the loop by creating a changing magnetic flux, φm, through the
loop. A changing magnetic flux can be created by the variation of the area of the loop, the orientation of the
loop, the magnitude of the magnetic field, or the direction of the magnetic field; since φm = N

∫

s
~B ·ndA. Since

the loop must remain fixed, only the magnitude or orientation of the magnetic field can be changed. This can be
done, for example, by moving a permanent magnet in a circular path around the plane of the loop.

We can also reason about the size and sign of the voltage we would measure across a loop experiencing a
change in flux. Faraday’s law states the faster the flux changes, the greater the voltage. Lenz’ law gives the
direction of the current that sets up a magnetic field, which resists the change in flux. If the direction of induced
current is known, a potential difference can be selected to establish that current. How do we use Lenz’ Law?
Given a situation with changing flux through a loop, use the Right Hand Rule for a wire, grabbing the circuit and
making sure your fingers curl so that the field IN the loop opposes the change in field. Your thumb points in the
direction of the induced current. Select a sign for the voltage, remembering the current flows from high potential
to low potential, so as to cause the current to flow in the correct direction.

Example 31.9 Direction of Current Flow
Problem: A square loop of wire sits in the x − y plane. You have placed the loop in a constant magnetic field
~B = Cẑ, C > 0. You can change the magnitude of the magnetic field by turning the knob on the magnet power
supply. You want to induce a current in the clockwise direction as you look down on the loop from positive ẑ.
Do you increase or decrease the magnitude of the field?

Solution

By Lenz’ Law, current will be induced in a direction so as to
oppose the change in magnetic flux. If the induced current
is as drawn, the field of the induced current is into the page.
This must oppose the change in the magnetic field, so we
must increase the magnetic field.

Looking Down from the +z direction

I

Example 31.10 Plotting EMF
Problem: A loop of wire is placed so that its normal is parallel
to a magnetic field that is changing with time. The strength of
the magnetic field is plotted to the right. Plot the emf induced
in the loop.

 t

 B

Solution
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A emf requires a changing flux, so from point b to point c the
emf is zero. By Lenz’ law the emf resists the change in flux so a
the decrease in flux from a to b causes a positive emf. The flux
increases from c to d with twice the slope of the decrease from a
to b, so the emf is positive from c to d and twice as big as the
emf from a to b.

 t

 B

 t

 emf

 a

 b  c

 d

31.3.2 Drawing the Electric Fields Resulting From Changing Magnetic Fields

If a changing magnetic field is generating the emf , then the emf is caused by an electric field generated by
the changing magnetic field. For simple systems, we can draw this electric field.

Example 31.11 Electric Field Due to Faraday’s Law
Problem: A circular region of the x−y plane contains a uniform magnetic field, which is decreasing in strength.
Draw the electric field.

Solution

Since the magnetic field is changing, there is an electric field
around any closed path through which the flux is changing. By
the symmetry of the situation, the electric field lines must be
circles. Lenz’ Law tells us that if a circuit was placed in the
electric field, current would flow to oppose the change in field.
This current flow would be in the direction of the field lines, since
the field lines point in the direction of the force on a positive
charge. Since the magnetic field is decreasing, the current would
produce a magnetic field in the direction of the existing field to
oppose the change. Using the right hand rule for a wire on one
of the field lines to find the required direction of current flow for
the required field direction gives the direction of the electric field
lines drawn.

Decreasing Magnetic  Field Electric Field

31.3.3 Eddy Currents

When a conductor experiences a changing magnetic field, an electromotive force is induced around any closed
path in the conductor, which encloses a changing magnetic flux. This happens for solid conductors as well as
loops. The emf induces currents around closed loops in the solid conductor. These currents are called Eddy

Currents.
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Eddy Currents : Eddy currents are currents induced in a solid piece of conducting
material by a changing magnetic flux.

Consider the following case: a steel disk is thrown into a magnetic field. As it enters and leaves the field, there
is a changing magnetic flux through the disk, inducing an emf , which causes a current to flow.

Example 31.12 Eddy Current in a Disk
Problem: A steel disk is thrown into a region of uniform magnetic field from a region of zero magnetic field.
Sketch any induced currents as the disk enters the field.

Solution

As the disk enters the magnetic field, the flux through the disk
changes, causing an emf around paths though the disk, by Fara-
day’s law. Since the disk is conducting, this emf will cause a
current to flow. The current direction will act to oppose the
change in flux. The flux is increasing, so the current will circulate
in a direction to produce a magnetic field opposite to the uniform
field. I used the right hand rule for a wire to figure out the di-
rection of the current flow to produce this opposing field. Once
inside the uniform field, the flux is no longer changing, so eddy
currents stop.

motion

31.3.4 Quantitative Statement of Faraday’s Law

In this section, we state the quantitative form of Faraday’s law and do a bunch of examples.

Faraday’s Law: For any closed path, C, the emf around the path is related to the
magnetic flux through the surface, S, bounded by the path by

emf = −dφm

dt
= − d

dt

∫

S

~B · n̂dA,

that is, EMF equals the time rate of change of magnetic flux.

Faraday’s Law for a Fixed Path: A changing magnetic flux through the surface
enclosed by a stationary path causes a net electric field around the path,

emf =

∮

C

~E · d~ℓ = −dφm

dt
= − d

dt

∫

S

( ~B · n̂)dA,

where ~E is the electric field, emf is the electromotive force, C is the path bounding
the surface S, ~ℓ points along the path, φm is the magnetic flux through the surface, n̂
is the normal to the surface, and t is the time.

Faraday’s law allows us to extend the Maxwell equation relating to independence of path to systems with a
changing magnetic field. All that is left to do to complete Maxwell’s equations is to complete Ampere’s law.
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Maxwell’s Equations Part III: Maxwell’s Equations and the Lorentz force as intro-
duced to this point are:

Maxwell’s Equations

Gauss’ Law
∫

S
( ~E · n̂)dA = Qenclosed

ǫ0

No Magnetic Monopoles
∫

S
( ~B · n̂)dA = 0

Faraday’s Law (Independence of Path)
∮

C
~E · d~ℓ = −dφm

dt = − d
dt

∫

S
~B · n̂dA

Ampere’s Law
∮

C
~B · d~ℓ = µ0IC when there are no changing electric fields.

Lorentz Force

~F = q ~E + q~v × ~B

The only thing left to do is finish Ampere’s law.

31.3.5 Calculations using Faraday’s Law

Computing the induced emf using Faraday’s Law follows a simple pattern. First, compute the flux through
the circuit as a function of time; second, take the derivative of the flux to get the emf ; third, apply Lenz’ Law
to get the sign. The following examples illustrate computing the emf when the changing flux is caused by a
changing field, a loop that is changing size, and a rotating loop.

Example 31.13 Compute Induced EMF for Changing Magnetic Field
Problem: A square coil of wire 10cm on a side with 100 turns sits in the x − y plane. The coil resides in a
magnetic field ~B = Ct2ẑ that is changing with time. The constant C = 0.1T/s2. Compute the induced EMF in
the coil.

Solution

x

y

z

y

x

B

Definitions

ℓ = 10cm ≡ Length of one side of the square

N = 100turns ≡ Number of turns constituting the loop

~B = Ct2ẑ ≡ Time-dependent magnetic field

φm ≡ Magnetic flux through the loop

A ≡ Area of the loop

t ≡ Time

Strategy: Compute the flux through the loop, apply Faraday’s Law to get the voltage, and Lenz’ Law to get
the sign.
(a) Compute the Flux: Since the magnetic field is uniform over the area of the loop and the loop is perpendicular
to the field, the flux is φm = NBA = NBℓ2.
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(b) Use Faraday’s Law:

emf = − d

dt
φm

= − d

dt
(NBA) = − d

dt
(NBℓ2)

Only the magnetic field is time dependent, so

emf = −Nℓ2
d

dt
B = −Nℓ2

d

dt
(Ct2) = −Nℓ2[2Ct] = −(0.2T/s2)(100)(0.1m)2t = −0.2

Tm2

s2
t

The sign of the EMF is related to the choice of direction the path traverses the circle, either clockwise or
counterclockwise; the sign of the flux depends on whether the loop normal points into or out of the page.
Needless to say, this involves another Right Hand Rule. Therefore, use Lens’ law to figure out the current
direction.
(c) Use Lenz’ Law: Since the magnetic field is increasing in the +ẑ direction, the induced EMF will produce a
current that produces a field, that points in the −ẑ direction. By the right-hand rule, the current is clockwise as
viewed from the +ẑ direction.

Example 31.14 Compute Induced EMF for a Deforming Loop
Problem: A circular loop of wire has radius R0 = 10cm at t = 0. The radius is increasing at a rate of
v = dR

dt = 1cm per minute. The loop sits in the x − y plane in a magnetic field ~B = −0.5Tẑ. Compute the
induced emf at t = 0.

Solution

x

y

z

y

x

B

r0

Definitions

~B = −0.5Tẑ ≡ Magnetic field

v = dR/dt = 1cm/min ≡ Rate of change of radius of the loop

R0 = 10cm ≡ Initial radius of the loop

φm ≡ Magnetic flux through the loop

A ≡ Area of the loop

Strategy: Compute the flux as a function of time, apply Faraday’s Law, then apply Lenz’ Law to get the sign.
(a) Compute the Flux: Since the magnetic field is uniform over the surface bounded by the loop, the flux

through the loop is φm = N( ~B · n̂)A. The number of turns is not given in the problem so N = 1. Since the

normal to the loop is in the same direction as the field, ~B · n̂ = B. The flux is then φm = BA(t) where the
area of the loop has been written as a function of time. The loop is circular, therefore the area of the loop is
A(t) = πR(t)2. The radius R(t) is changing with time and can be written

R(t) = R0 +
dR

dt
t = R0 + vt
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where R0 is the radius of the loop at time zero and v is the rate the radius is changing. Substituting everything
back together yields

φm = Bπ(R0 + vt)2

(b) Use Faraday’s Law: The flux linking the circuit changes with time and therefore there is an induced EMF
given by Faraday’s Law.

emf(t) = − d

dt
φm

= − d

dt
Bπ(R0 + vt)2

emf(t) = −2Bπ(R0 + vt)v

Evaluate this at t = 0

emf(0) = −2BπR0v = −2(−0.5T)π(0.1m)(
0.01m

60s
) = 0.052mV = 5.2 × 10−5V

(c) Use Lenz’ Law: Since the loop is linking more of the magnetic field in the −ẑ direction, the induced field
will be one that points in the +ẑ direction. By the right-hand rule, the current is counter-clockwise as viewed
from the +ẑ direction.

Example 31.15 Loop with Changing Magnetic Field
Problem: A square loop of width 5cm on a side and 50 turns lies in the x − y plane. A uniform magnetic field
~B = 0.1 T

s2 t2ẑ is turned on starting at t = 0.

(a)Compute the magnetic flux linking the circuit as a function of time.

(b)Compute the EMF induced in the circuit as a function of time.

(c)Draw the system looking down at the loop from the +z direction. Indicate the direction of the
induced current.

I

Definitions

~B = 0.1
T

s2
t2ẑ ≡ Magnetic Field

φm(t) ≡ Magnetic Flux

A ≡ Area of Loop

t ≡ Time

N = 50 ≡ Number of Turns

Strategy: Compute the flux through the loop as a function of time, then apply Faraday’s Law to compute the
emf. Use Lenz’ Law to compute the direction of the induced current.

Solution to Part (a)

Compute Magnetic Flux: Since the field is normal to the loop, the magnetic flux is defined as

φm(t) = NAB(t) = (50)(5cm)2(0.1t2
T

s2
) = 0.0125t2

Tm2

s2
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Solution to Part (b)

Compute EMF: Compute the emf using Faraday’s Law,

emf = −dφm(t)

dt
= −0.0125

Tm2

s2
dt2

dt
= −0.025t

V

s

Solution to Part (c)

Apply Lenz’ Law: The magnetic field is increasing in strength out of the page, therefore the magnetic flux out
of the page is increasing. By Lenz’ Law a current will be induced that creates a magnetic field to counteract the
change in flux. The flux is increasing out of the page, so the induced field must point into the page. Using the
right hand rule for a wire gives the induced current direction drawn.

31.4 Generators

A loop rotating in a magnetic field will produce an emf that is a sine wave. To evaluate the motion of the
loop, we need to recall certain definitions about rotational motion and calculate the flux through a rotating loop.

Definition of Generator: A coil of wire in a magnetic field that is turned by some
external power source in order to produce electricity.

Period of Rotation: The period of rotation, T , is the time it takes a rotating body to
make one complete revolution.

Frequency of Revolution: The frequency of revolution f is the number of complete
revolutions an object makes per second. It is equal to the inverse of the period

f =
1

T

Units of Frequency: Frequency is measured in Hertz(Hz).

1Hz = 1s−1

Angular Frequency: The angular frequency, ω, is the number of radians an object
rotates per second,

ω = 2πf

Example 31.16 Compute the Magnetic Flux Through a Rotating Loop
Problem: A circular loop turns once per minute in a 0.25T magnetic field on an axis perpendicular to the field.
The loop has a radius of 10cm and 10 turns of wire. The normal of the loop is initially in the same direction as
the field. Compute the flux as a function of time (in seconds).

Solution
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x

y

z

y

x

R

rotation axisB

t = 0

Definitions

B = 0.25T ≡ Magnitude of the magnetic field

R = 10cm ≡ Radius of loop

N = 10 ≡ Number of turns of the loop

φm ≡ Magnetic flux through the loop

φmax ≡ Maximum magnetic flux through the loop

T = 1min ≡ Period of rotation

ω ≡ Angular frequency of rotation

Strategy: Compute maximum flux, then use a cosine time dependence and fix the phase angle.
(a) Use Definition of Magnetic Flux: The magnetic flux for a coil in a uniform field is by definition

φm = N( ~B · n̂)A

This can be re-written using a property of the dot product as

φm = NBA cos θ

For a turning loop in a constant field the only thing changing with time in this expression is the angle the loop
makes with the field, therefore θ is a function of time θ(t). The quantity NBA is the maximum flux, φmax,
through the loop which happens when the normal of the loop points in the same direction as the magnetic field.

φmax = NBA = NBπr2 = (10)(0.25T)π(10cm)2 = 0.0785Wb

(b) Write θ as a Function of Time: The function θ(t) gives the angle the normal makes with the field at all
times. This can be written in terms of the angular velocity, ω, and the phase angle, δ.

θ(t) = δ + ωt

Since the normal of the loop is perpendicular to the field at t = 0, θ(0) = 0 = δ + ω(0) therefore δ = 0, and

θ(t) = ωt

(c) Compute Angular Frequency: Convert the period to seconds

T = 1min = 60s

The angular frequency is then

ω =
2π

T
=

2π

60s
= 0.105

rad

s

(d) Put it All Back Together:

φm(t) = φmax cos(ωt) = NBπr2 cos(ωt)

φ(t) = 0.0785Wb cos[0.105
rad

s
t]

Example 31.17 Maximum EMF of Generator
Problem: A circular coil with 200 turns has a radius of 1.5cm. It rotates in a uniform magnetic field B = 0.10T,
so that at some point in the rotation, the normal to the loop is parallel to the field.
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(a)What should the frequency be in order to generate a maximum EMF of 10V?

(b)If the coil rotates at 60Hz, what is the maximum EMF in the coil?

(c)If the flux is maximum at t = 0, draw a well labelled plot of the output emf of the generator.

Magnetic Field

Loop

Direction
of Rotation

n

θ

Definitions

n̂ ≡ Normal to Loop

A ≡ Area of Loop

B ≡ Magnetic Field

ω ≡ Angular Frequency

t ≡ Time

f ≡ Frequency

emfmax ≡ Maximum Induced EMF

Strategy: Write magnetic flux as a function of time, then apply Faraday’s Law to get the EMF.

Solution to Part(a)

(a) Compute Time Dependent Flux: The magnetic flux is φm = NA~B · n̂, if the field is uniform. The angle,
θ, between the magnetic field and the loop is changing at a constant rate; this can be written as θ = ωt, where
ω = 2πf is the angular frequency and f is the frequency. We can then write

φm(t) = NA~B · n̂ = NAB cos θ = NAB cos(ωt)

This choice for the time dependence of θ assumes the angle between the loop normal and the magnetic field is
zero at time t = 0.
(b) Apply Faraday’s Law: The emf produced by the coil is given by applying Faraday’s Law to the time
dependent flux,

emf = −dφm(t)

dt
= −NAB

d

dt
cos(ωt) = NABω sin(ωt).

The maximum emf occurs when sin(ωt) = 1, so

emfmax = NABω = 2πfNAB.

(c) Solve for Frequency: We wish to compute the frequency at which the generator must turn to produce
emfmax = 10V. Solving for the frequency gives

f =
emfmax

2πNAB
=

10V

2π(200)(π)(1.5cm)2(0.1T)
= 113Hz

Solution to Part (b)

Substituting into the expression derived in part (a), the maximum emf at f = 60Hz is

emfmax = 2πfNAB = 2π(60Hz)(200)(π)(1.5cm)2(0.1T) = 5.31V

Solution to Part (c)
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The output emf is drawn to the right.

t

emf (t)

0V

emfmax

− emfmax

Almost all electrical power is produced by generators, spinning coils in magnetic fields.

c© 2007 John and Gay Stewart, The University of Arkansas 355



Chapter 32

Inductance

32.1 Inductance

In electrostatics, a complex system of charge and field is reduced to a single parameter—the capacitance—
when analyzing electric circuits. The magnetic properties of a system of conductors are reduced to a parameter
called the inductance, when analyzing electric circuits. This inductance is the ratio of the flux through the circuit
to the current flowing in the circuit. We can compute the inductance of a single circuit called the self-inductance

or the inductance between two circuits, called the mutual inductance.

Definition of Inductance: The inductance, L, of a circuit is the ratio of the magnetic
flux, φm, through the circuit to the current, I, flowing in the circuit,

φm = LI.

Units of Inductance: The units of inductance are the Henry (H),

1H = 1
Wb

A
= 1

Tm2

A
.

The only case where we will actually compute the inductance from scratch is the case of an infinite solenoid. The
strategy is very similar to that of computing a capacitance. We take a system of conductors (usually wires) that
have no current running through them and apply an arbitrary current I. We compute the flux resulting from I,
then apply the definition of inductance, and cancel the arbitrary current.

Example 32.1 Compute the Inductance from the Magnetic Properties
Problem: A long inductor is made of 10000 turns of wire wound on a straw 1mm in diameter and 15cm long.
Compute the inductance.

Solution
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D

Definitions

N = 10000turns ≡ Number of turns of wire

D = 1mm ≡ Diameter of the solenoid

ℓ = 15cm ≡ Length of the solenoid

L ≡ Inductance of the solenoid

R ≡ Radius of the solenoid

A ≡ Cross-sectional area of the solenoid

I ≡ Current

φm ≡ Flux

Strategy: Introduce a current and compute the magnetic field. Compute the flux and apply definition of
inductance.
(a) Introduce a Current I: Allow a current I to flow in the coil.
(b) Compute the Magnetic Field: The magnetic field in the solenoid in the infinite solenoid approximation is,

B = nµ0I,

where n is the turns per unit length.
(c) Compute the Flux: The magnetic field of the solenoid creates a flux through all N = nℓ turns of the
solenoid. Since the field inside an infinite solenoid is uniform, the flux is

φm = NBA = (nℓ)(nµ0I)(A) = µ0n
2ℓIA

(d) Use Definition of Inductance: By definition,

L =
φm

I
= µ0n

2Aℓ.

(e) Substitute and Compute: The number of turns per length, n, is n = N/ℓ. The cross-sectional area of the
solenoid A = πR2 = πD2/4.

L = µ0
N2

ℓ2
πD2

4
ℓ

L =
µ0N

2πD2

4ℓ

L =
(4π × 10−7 N

A2 )(10000)2(π)(1 × 10−3m)2

4(15 × 10−2m)

L = 0.66mH

Inductance of a Solenoid : The inductance of a solenoid that is very long compared
to its radius is

L = µ0n
2Aℓ,

where n = N/ℓ is the turns per unit length of the solenoid, A is the area of the
inductor, and ℓ is the length of the solenoid.
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32.2 Inductors

Inductors are circuit elements that resist a change in current. If we substitute the definition of inductance
into Faraday’s Law we get the following expression for the potential difference across an inductor.

Faraday’s Law for Inductor : The emf across an inductor with inductance, L,
carrying current, I, is

emf = −L
dI

dt
,

where t is the time. An inductor in a circuit carrying a constant current has zero
potential difference. This emf will behave just like a potential difference in an
electric circuit.

Symbol For Inductor: An inductor is represented in an
electric circuit by the symbol to the right.

L

Example 32.2 Application of the Definition of Inductance
Problem: An inductor, with inductance 1H, carries a current that varies with time. The time dependence
of the current is

I(t) =
γ

t2

where t is the time and γ = 0.1A · s2. Compute the potential difference across the inductor.

Solution

The potential difference across an inductor is given by ∆V = −LdI
dt . Substituting the current

∆V = −L
d

dt

(

0.1As2

t2

)

=
(0.2s3)

t3
V

Inductors Resist Changes in Current: An inductor produces an emf that tries to
counter a change in current, therefore inductors have the effect of smoothing out
rapidly changing currents.

To create the magnetic field in the inductor, we have to do work against the emf across the inductor;
therefore, the inductor contains energy. The work required to set up the magnetic field is the work required
to set up the current against the emf resisting the change in current. If the current is established over a
period from 0 to T , then the work done is

W = −
∫ T

0

I∆V dt = −
∫ T

0

I

(

− L
dI

dt

)

dt =

∫ I

0

LIdI =
1

2
LI2

Energy Stored in Inductor : The amount of energy stored in a system of conductors
with inductance L and current I is

Um =
1

2
LI2.

Example 32.3 Compute Potential Difference Across an Inductor
Problem: An increasing current I(t) = γt3 flows through an inductor with inductance L.
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(a)Compute the magnitude of the potential difference across the inductor.

(b)Compute the energy stored in the inductor as a function of time.



L

VA

VB

I(t)

Definitions

L ≡ Inductance

t ≡ time

I(t) = γt3 ≡ Current As Drawn

Um ≡ Energy Stored in Inductor

Solution to Part (a)

The potential difference across an inductor is given by Faraday’s law,

∆V = −L
dI(t)

dt
= −L

dγt3

dt
= −3γLt2.

Solution to Part (b)

The energy, Um, stored in an inductor is related to the current by

Um =
1

2
LI2 =

1

2
L(γt3)2 =

1

2
Lγ2t6

Example 32.4 Qualitative Inductor Problem
Problem: The figure to the right shows the current applied
across an inductor as a function of time. Sketch the voltage
that would be measured across the inductor.

 0  t

 I(t)

Solution
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The relation between current and voltage for an inductor is
V (t) = −LdI(t)/dt. Therefore, when the current is constant
the voltage is zero. A positive slope on the current generates a
negative voltage. A larger negative current generates a larger
positive voltage.

 0  t

 I(t)

 0  t

 V(t)

Example 32.5 Inductance and Energy of a Solenoid
Problem: A solenoid is wound with 100 turns of wire on a core with radius 2cm and length 20cm. The
solenoid carries a current of 0.1A.

(a)What is the inductance of the solenoid assuming it is infinitely long?

(b)What is the magnetic field at the center of the solenoid?

(c)What is the magnetic flux linking the solenoid?

(d)What is the magnetic energy stored in the solenoid, using the ideal solenoid approximation?

(e)If the current in the solenoid is I(t) = 10t2A/s2, what is the voltage across the solenoid?

Solution to Part(a)

We compute the flux in the solenoid in part (c), use that and the definition of inductance as

L =
φ

I
=

7.9 × 10−6Tm2

0.1A
= 7.9 × 10−5H

Solution to Part(b)

c© 2007 John and Gay Stewart, The University of Arkansas 360



32.3. MUTUAL INDUCTANCE AND TRANSFORMERS CHAPTER 32. INDUCTANCE

The magnetic field of an infinite solenoid is B = nµ0I, where n = 100/20cm = 500m−1 is the turns per unit
length and I = 0.1A. Substituting gives

B = nµ0I = (500m−1)(4π × 10−7 Tm

A
)(0.1A) = 6.3 × 10−5T

Solution to Part(c)

The magnetic flux linking the solenoid is φm = NAB where A is the area and N = 100 is the number of
turns. The area of the solenoid is A = πr2. Substituting gives

φm = NAB = (100)π(2cm)2(6.3 × 10−5T) = 7.9 × 10−6Tm2

Solution to Part(d)

The magnetic energy is

Um =
1

2
LI2 =

1

2
(7.9 × 10−5H)(0.1A)2 = 3.95 × 10−7J

Solution to Part(e)

Faraday’s Law states the induced emf in a circuit is

emf = −dφm

dt
= −L

dI(t)

dt

emf = −L

(

10A/s2

)

dt2

dt
= −L

(

20A/s2
)

t = −(7.9 × 10−5H)(20A/s2)t = −(1.6 × 10−3V/s)t

32.3 Mutual Inductance and Transformers

The self-inductance is a property of a single circuit. The flux produced by one circuit can also generate
an emf in a circuit that is otherwise electrically isolated.

Definition of Mutual Inductance: Given two circuits, A and B, the mutual induc-
tance MAB is the ratio of the flux, φA, through circuit A caused by the current in
circuit B, IB ,

φA = MABIB .

The mutual inductance is symmetric MAB = MBA.

Mutual inductance is the physical origin of the behavior of a transformer in an electrical circuit. A
transformer is usually two isolated coils of wire wound on the same iron core so that the flux of one coil links
the other coil. Transformers can provide electrical isolation because the two circuits are not connected by a
conducting path, only by magnetic fields. If the two loops have different numbers of turns, the transformer
can be used to increase (step up) or decrease (step down) the voltage of a signal. This is the purpose of
the transformers you see on power lines. It is more efficient to transport electricity at high voltages. These
voltages must be decreased (stepped down) for household use.

Transformer Circuit Symbol:

 Transformer
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Suppose we wind two separate coils of wire, a and b, on a
ferromagnetic ring. The ferromagnet will ensure that the flux
created when a voltage ∆Va is applied across coil a is delivered
to coil b. If φ1 is the magnetic flux created by one turn of wire,
then the total flux is approximately φm = Naφ1, where Na is
the number of turns of wire on coil a. By Faraday’s law, the
emf across coil a is

∆Va = −Na
dφ1

dt

If all the flux is delivered to coil b, the emf induced in coil b is

∆Vb = −Nb
dφ1

dt

where Nb is the number of turns on coil b. Combining these
two expressions gives,

∆Va

Na
=

∆Vb

Nb

 Magnetic Field

 Ferromagnetic Ring

∆Va
∆Vb

Transformer Output Voltage: If a transformer is formed from two coils where the
first coil is wound with Na turns and the second coil is wound with Nb turns then
the ratio of the input voltage ∆Va to the output voltage is ∆Vb is

∆Vb

∆Va
=

Nb

Na

Example 32.6 Mutual and Self-Inductance
Problem: A loop of wire carries 5A of current, which generates a total magnetic flux of 0.0001Tm2 through
the loop.

(a)Compute the self-inductance of the loop.

(b)Compute the magnetic energy stored in the system.

(c)If another loop of the same shape is laid over the first loop, so that the same flux links the
second loop, compute the mutual inductance of the system.

Solution to Part(a)

The self-inductance, L, is defined as L = φm/I, therefore

L =
φm

I
=

1 × 10−4Tm2

5A
= 2 × 10−5H

Solution to Part(b)

The magnetic energy stored in an inductor is given by

Um =
1

2
LI2 =

1

2
(2 × 10−5H)(5A)2 = 2.5 × 10−4J

Solution to Part(c)

Since the loop and the flux are the same M12 = φm,2/I1 = 2 × 10−5H
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Example 32.7 Compute Mutual Inductance from the Magnetic Properties
Problem: Two flat loops of wire, A and B, lie in the x−y plane. Loop A is centered at the origin and carries
a current IA = 20A, which produces a flux φB = 100Wb in coil B. Loop B carries a current IB = 10A,
which creates a flux of 50W in loop A. Compute the mutual inductance.

Solution

(a) Use Definition of Mutual Inductance for MBA:

MBA = φB/IA = 100Wb/20A = 5H

(b) Use Definition of Mutual Inductance for MAB:

MAB = φA/IB = 50Wb/10A = 5H

It is always true that MAB = MBA.

Example 32.8 Problems in Inductance
Problem: A solenoid has length 25cm, radius 1cm and 400 turns. It carries a current of I.

(a)Compute the magnetic field of the solenoid.

(b)Find the flux through the solenoid, assuming B to be uniform.

(c)Compute the self-inductance of the solenoid.

(d)Compute the mutual inductance, Msolenoid,loop, of the solenoid and a single loop of wire with
radius 2cm co-axial with the solenoid.

Strategy: Apply formula for magnetic field of solenoid, then definition of self and mutual inductance.

Solution to Part(a)

The magnetic field of a solenoid is B = nµ0I where n is the turns per unit length and I is the current. The
turns per unit length is the number of turns, N , divided by the length, ℓ, n = N/ℓ = 400/0.25m = 1600m−1.
So

B = nµ0I = (1600m−1)µ0I

Solution to Part(b)

To compute the inductance, we need to compute the magnetic flux in terms of an arbitrary current. Using
the field computed above, φm = NAB where A = πr2 is the area of the solenoid, with r the radius of the
solenoid. Substituting everything gives

φm = N(πr2)(nµ0I) = (nℓ)(πr2)(nµ0I) = πn2r2µ0ℓI.

Solution to Part(c)

The self-inductance, L, is defined as

L =
φm

I
= πn2r2µ0ℓ

L = (1600m−1)2π(1cm)2(4π × 10−7 Tm

A
)(0.25m) = 2.5 × 10−4H

Solution to Part(d)
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The mutual inductance, Msolenoid,loop, from the flux through the single loop generated by the field of the
solenoid is defined as

Msolenoid,loop = φloop/Isolenoid

where φloop is the magnetic flux through the loop and Isolenoid is current through the solenoid. The magnetic
flux through the loop is φloop = AsolenoidB = πr2

solenoidB since there is only one turn of wire and the magnetic
field only exists inside the solenoid. Substituting the expression for the magnetic field of the solenoid gives

φloop = πr2
solenoidnµ0Isolenoid

giving a mutual inductance of

Msolenoid,loop =
φloop

Isolenoid
= πr2

solenoidnµ0 = π(1cm)2(1600m−1)(4π × 10−7 Tm

A
) = 6.3 × 10−7H
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Magnetic Energy

33.1 Magnetic Energy

We can compute the energy stored in the magnetic field in a number of ways, from the energy density,
from the inductance, or from the work to establish the field. The electric field contained energy which could
be expressed as an energy density. The field contained energy because it required work to move electric charge
into the configuration that generated the field. Magnetic fields contain energy, which can be expressed as an
energy density. The magnetic field has energy because of the work required to establish the currents that
create the field.

Consider a circular solenoid of length ℓ and end area A. The volume of the solenoid is V = ℓA and the
inductance in the infinite solenoid approximation is L = µ0n

2Aℓ. The energy of the solenoid is U = 1
2LI2

and the energy density, ηm, is

ηm =
U

V
=

1
2LI2

V
=

1
2 (µ0n

2Aℓ)I2

ℓA
=

1

2
µ0n

2I2

The magnetic field in the solenoid is B = µ0nI. If the energy density is expressed in terms of the field we
get

ηm =
B2

2µ0

This must be the energy density of any magnetic field.

Energy Density of Magnetic Field : The energy density of the magnetic field, ηm,
is

ηm =
B2

2µ0
,

where B is the magnitude of the magnetic field.

Example 33.1 Energy Stored in Solenoid
Problem: The magnetic field in a small region inside a solenoid is 4.0mT.

(a)What is the magnetic energy density in this region?

(b)What is the total energy stored in a cube 1cm on a side in this region in the solenoid?

Solution to Part (a)

The energy density

ηm =
B2

2µ0
=

(4 × 10−3T)2

2(4π × 10−7 Tm
A )

= 6.37
J

m3

Solution to Part (b)
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The total energy, Um, in a 1cm cubic volume, V , is density multiplied by the volume

Um = ηmV = (6.37
J

m3
)(0.01m)3 = 6.37 × 10−6J
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Chapter 34

RL Circuits

34.1 Limiting Behavior of RL Circuits

Faraday’s Law states that an inductor will set up an emf that resists the change in magnetic flux
through the inductor. For self-inductance, the magnetic flux is generated by the current flowing through the
inductor. Therefore, an inductor will set up an emf to resist a change in current through itself. We can
consider connecting an inductor in series with a resistor and maybe a battery, just as we did in RC circuits.
We will call such a connection an RL circuit. Consider the same cases used in RC circuits:

• RL Charging: An inductor with zero initial current is connected in series with a battery and a resistor.
After a long time the current will be constant and (by Faraday’s Law) the voltage across the inductor
will be zero.

• RL Discharging: An inductor carrying some current is connected to a resistor. The current through
the inductor will gradually decay as the energy stored in the inductor is dissipated in the resistor.

The charging and discharging terminology is in analogy to the RC circuit. An inductor is “charged” when
a current flows through it. The key to analyzing these circuits is to understand what Faraday’s law implies
about the behavior of the devices. Because of Faraday’s Law, an inductor will not allow a sudden change
in the current in a circuit. Therefore, when an inductor with zero current flowing through it is connected
to a battery through a resistor, the current cannot immediately change to a non-zero value. In this case,
immediately after connection to the battery, the current through the circuit is zero, and therefore, by Ohm’s
Law, the voltage across the resistor is zero. Therefore, to analyze the initial voltages in an RL circuit:

Short-Time Charging Behavior: At short times after connection to the battery,
the current is zero (or approximately zero), which means the potential difference
across the resistors is zero. Although the current is zero, the change in current is
non-zero, which means there is a potential difference across an inductor.

Reducing a Resistor in a Circuit
with Zero Current : If no current
is flowing in a circuit, then there
is no potential difference across
a resistor and it can be replaced
by a wire. This means that the
emf across the inductor will be
the same size as the applied po-
tential difference, and in the op-
posing direction.

I=0

I=0

R

∆V0

∆V0
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After an inductor has been connected to a battery for a long time, the current reaches a constant final
value. If the current through an inductor is unchanging, then the potential difference across the inductor is
zero.

Long-Time Charging Behavior: At long times the current in the circuit has reached
a steady value (no change), which means that there is no electric potential difference
across the inductor. This allows the inductor to be replaced by a straight wire.

We can use these observations to analyze the long and short time behavior of RL circuits.

Example 34.1 Analyze Short Time Behavior of an RL Circuit
Problem: An RL circuit is formed from two resistors, an inductor, and a battery in series. The circuit
elements have the following values: V = 12V, R1 = 3.0MΩ, R2 = 6.0MΩ, and L = 3.0µH. When answering
the following questions, assume that the circuit has just been closed (analysis in the short-time limit). What
is the current through each resistor? What is the potential difference across each resistor? What is the
potential difference across the inductor?

Solution

L∆V

R1

R2

Definitions

∆V = 12V ≡ Potential difference between battery terminals

R1 = 3.0MΩ ≡ Resistance of first resistor

R2 = 6.0MΩ ≡ Resistance of second resistor

L = 3.0µH ≡ Inductance of inductor

I ≡ Current through the circuit

∆V1 ≡ Potential difference across first resistor

∆V2 ≡ Potential difference across second resistor

∆VL ≡ Potential difference across inductor

Strategy: Use the fact that at short periods of time, the resistors can be replaced by straight wires. Analyze
the resulting DC circuit.

(a) Redraw Circuit: Redraw the circuit replacing the
resistors with wires. The current through the circuit is
approximately zero,

I ≈ 0A

Using Ohm’s Law shows that the potential difference
across the resistors is approximately zero.

∆V1 ≈ 0V ∆V2 ≈ 0V

L∆V
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(b) Solve the DC Circuit: The resulting circuit is a simple DC circuit and the potential differences can be
solved for using techniques for DC circuits. Since the terminals of the battery are connected directly to the
terminals of the inductor, the potential difference across each is the same,

∆V L = ∆V = 12V

Example 34.2 Analyze Long Time Behavior of an RL Circuit
Problem: An RL circuit is formed from two resistors, an inductor, and a battery in series. The circuit
elements have the following values: V = 12V, R1 = 3.0MΩ, R2 = 6.0MΩ, and L = 3.0µH. When answering
the following questions, assume that the circuit has been closed for a long time. What is the current through
each resistor? What is the potential difference across each resistor? What is the current through the inductor
and the potential difference across it?

Solution

L∆V

R1

R2

Definitions

∆V = 12V ≡ Potential difference between battery terminals

R1 = 3.0MΩ ≡ Resistance of first resistor

R2 = 6.0MΩ ≡ Resistance of second resistor

L = 3.0µH ≡ Inductance of inductor

I ≡ Current through the circuit

∆V1 ≡ Potential difference across first resistor

∆V2 ≡ Potential difference across second resistor

∆VL ≡ Potential difference across inductor

Strategy: Use the fact that at long periods of time, the inductor passes the current unimpeded. Analyze
the resulting DC Circuit.

(a) Redraw Circuit: Redraw the circuit by replacing the
inductor with a straight wire. The circuit given in the problem
is simplified in the long-time limit to be without the inductor,
leaving the two resistors in series with the battery.

L∆V

R1

R2
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(b) Solve the DC Circuit: The resulting circuit is a simple
DC circuit and the currents can be solved for using techniques
for DC circuits. The two resistors in series can be reduced to
a single equivalent resistor, Rs = 9.0MΩ. The potential drop
across this resistor is the same as that between the terminals
of the battery. Using Ohm’s Law, we find the current through
the equivalent resistor

I = ∆V/Rs = 12V/
(

9.0 × 106Ω
)

=
4

3
µA

which is the current through both real resistors since they are
in series.

∆V Rs
I

(c) Find the Potential Difference: Use Ohm’s Law to find
the potential differences. We can use Ohm’s Law, ∆V = IR,
to find the potential difference across each resistor.

∆V1 = IR1 =

(

4

3
× 10−6A

)

·
(

3.0 × 106Ω
)

∆V1 = 4.0V

∆V2 = IR2 =

(

4

3
× 10−6A

)

·
(

6.0 × 106Ω
)

∆V2 = 8.0V

∆V

R1

R2

∆V2

∆V1

(d) Compute Voltage Drop Across Inductor: Since the current does not change in the long-time limit,
the potential difference across the inductor is zero.

∆VL = 0

Since the inductor is in series with the resistors, the current through it is the same as through them.

I =
4

3
× 10−3A

34.2 RL Circuits

This section covers computing the functional form of the current and voltage in an RL circuit. The time
dependence of current through the circuit and the potential differences across the inductor and resistor are
the same increasing or decreasing exponential curves we encountered in RC circuits. The time dependence
is characterized by a time constant τ . For an RL circuit,

Time Constant, τ : The time constant of an RL circuit is τ = L/R, where R is the
total resistance and L is the inductance.

Since all the time dependence curves are exponentials involving the time constant, the key step in an RL
circuit problem is to determine whether the time dependence of the quantity of interest is an increasing or
decreasing exponential.
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Increasing Exponential Curve: Some features of RL circuits increase with time,
they have a general time dependence of

1 − exp(−t/τ),

which at time t = 0 is zero and increases to 1 at long periods of time. The graph
to the right might be the potential difference across a resistor in a “charging” RL
circuit with a battery with voltage ∆Vb = 10V, and time constant τ = 10s.
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Decreasing Exponential Curve: Some features of RL circuits decrease with time,
they have a general time dependence of

exp(−t/τ),

which at time t = 0 is one and decreases to 0 at long periods of time. The graph
to the right might be the potential difference across a “discharging” inductor with
initial potential difference ∆V0 = 10V, and time constant τ = 10s.
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We can apply these mathematical forms to charging and discharging RL circuits.

Time Dependence in a “Charging” RL Circuit: If an initially “uncharged” inductor
with inductance L is charged by a battery with potential difference ∆V0 through
a resistor with resistance R, then the time dependence of the current through the
inductor is

IL(t) = If [1 − exp (−t/τ)]

where If is the final, steady current after the inductor has fully “charged.” The

potential difference across the inductor, ∆VL = −LdI(t)
dt , is

∆VL(t) = V0 exp (−t/τ) .

Example 34.3 Analyze Charging Behavior of an RL Circuit
Problem: A 3.0mH inductor is in series with a 9.0Ω resistor. These are then connected across a 6.0V
battery and the inductor is allowed to “charge”. What is the time-dependent current through the resistor?

Solution
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I

L

R1

∆V1

Definitions

R1 = 9.0Ω ≡ Resistance of Resistor 1

∆V1 = 6.0V ≡ Potential Difference Across Battery

L = 3.0mH ≡ Inductance of the inductor

I(t) ≡ Current in the circuit

If ≡ Final current through the resistor

Strategy: Use formula for charging inductor, and fix the constant from the long-time behavior.
(a) Compute Final Current, If , Through the Circuit: Use Example 34.2 Analyze Long Time Behavior of
an RL Circuit, to get If , which for the circuit in the figure is simply If = ∆V1/R1.

If = ∆V1/R1 = 6.0V/9.0Ω = (2/3)A

(b) Compute Time Constant, τ : The time constant of an RL circuit is τ = L/R,

τ = L/R1 = 3.0 × 10−3H/9.0Ω = 0.33ms

(c) Use “Charging” Form of Current: The current in a charging RL circuit is

I(t) = If [1 − exp(−t/τ)]

The current has its minimum value at t = 0, and then increases to its final value, so the proper form of the
time dependence is

I(t) = If [1 − exp(−t/τ)]

I(t) = 2/3A
{

1 − exp
[

−t/0.33 × 10−3s
]}

Time Dependence in a “Discharging” RL Circuit: If an inductor with inductance
L, and initial current I0, “discharges” through a resistor with resistance R, then
the time dependence of the current through the inductor is

IL(t) = I0 exp (−t/τ)

When two objects are alone in series, their potential drops must be equal and
opposite and the current flowing through them must be the same. The potential
difference across the resistor is always IR. The potential difference across the
inductor is also IL(t)R or

∆VL(t) = ∆V0 exp (−t/τ)

where ∆V0 = I0R. You also get this result from directly applying ∆VL(t) = −LdI(t)
dt .
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Example 34.4 Analyze Discharging Behavior of an RL Circuit
Problem: A 3.0mH inductor initially has a current of 4.0A through it. This inductor is then placed in series
with a 9.0Ω resistor and allowed to “discharge”. What is the time-dependent current through the resistor?

Solution



L

I

R1

Definitions

R1 = 9.0Ω ≡ Resistance of Resistor 1

L = 3.0mH ≡ Inductance of the inductor

I(t) ≡ Current in the circuit

I0 = 4.0A ≡ Initial Current

Strategy: Use formula for discharging inductor in an RL circuit.
(a) Compute Time Constant, τ : The time constant of the circuit is

τ = L/R.

The time constant of an RL circuit is τ = L/R,

τ = L/R1 = 3.0 × 10−3H/9.0Ω = 0.33ms

(b) Use Discharging Form of Current: The current in a discharging RL circuit is

I(t) = I0 exp(−t/τ).

Since the current in the circuit starts at its highest value I0 and decays toward zero, the correct form of the
time dependence is a decaying exponential.

I(t) = I0 exp(−t/τ)

I(t) = 4.0A exp
[

−t/0.33 × 10−3s
]
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Final Topics Test 3

35.1 Devices Utilizing the Lorentz Force

35.1.1 Speaker I

The first speaker we built attached a magnet to the base of a paper cup and then wound a coil of wire
around the cup.

• (1) Changing current from music source produces a changing, non-uniform field.

• (2) Changing non-uniform field produces a changing force on the magnetic dipole.

• (3) A changing force is communicated to the bottom of the cup, where vibrations on the cup from the
coil produce sound.

music source

 I

35.1.2 Speaker II (Commercial)

The second type of speaker we built attached a coil of wire to a flat board. The speaker was then placed
in a magnetic field and the board vibrated to produce sound.

• (1) Permanent magnets produce a static field.

• (2) The music source produces a time-varying current which experiences a time-varying force (Lorentz
force).

• (3) The net upward or downward force is communicated to the sounding board, which vibrates, causing
sound.
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1 Draw the Magnetic Field Vectors

2 Draw the Force Vectors

3 Force and Field are Perpendicular

F Fnet

B B

F

35.1.3 Motors

We also built a motor in lab. The motor was composed of a
coil of wire with one end completely sanded and one end half
sanded suspended by a paper clip.

Magnet

 Clay

 Paper Clips

 Coil

The motor turned electrical energy into mechanical energy by,

• (1) Magnets produce static (unchanging) magnetic fields.

• (2) A magnetic field exerts torque on the loop that causes it to rotate toward equilibrium. This force
is called the Lorentz Force.

• (3) The current is turned on and off so torque only acts in one direction, causing rotation.
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I

  Paper Clip

F

B

B

B

B

Draw the field so it extends to the coil, draw the direction of the field at both ends of the coil, then the
direction of the force using the Lorentz force. Common mistakes made in the description of speakers and
motors.

• (1) Magnetic fields DO NOT interact to produce force. Force is produced by the action of the field on
current, or sometimes atomic current in permanent magnets.

• (2) Draw the field so that it extends to coil.

• (3) NO FARADAY in speakers– Faraday is involved in generators and microphones.

35.2 Devices Utilizing Faraday’s Law

35.2.1 Microphones

A microphone turns sound vibrations into electrical signals.

• (1) The permanent magnet creates a static magnetic
field.

• (2) Sound vibrations vibrate the magnet, causing a
changing magnetic field at the coil and thus a changing
magnetic flux.

• (3) A changing magnetic flux produces an emf by Fara-
day’s Law.

Scope
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35.2.2 Generators

A generator converts mechanical energy into electrical energy.

• (1) A coil of wire is placed in a permanent magnetic field.

• (2) The coil is spun by an external force.

• (3) The flux through the surface bounded by the coil
changes with time.

• (4) A changing flux produces an emf by Faraday’s Law.

 V
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Chapter 36

Displacement Current

36.1 Displacement Current

36.1.1 Why Does Ampere’s Law Need Fixing?

Faraday’s Law stated that a changing magnetic field produces an electric field. We could expect a certain
level of symmetry in the universe, but up to now, there has been no law about the effect of a changing
electric field. The form of Ampere’s law we have been using applies only when there are no changing electric
fields. When there are changing electric fields, Ampere’s law picks up another term.

Consider a parallel plate capacitor in the process of being charged with a current I as shown below. Let
the plate area be A and the plate separation be d.

End ViewSide View

Surface 1

Surface 2

Surface between plates

Surface on top of plate

A

CI

I

amperia
n path

 +

 +

 +

 +

 _

 _

 _

 _

I I

 +

 +

 +

 +

 _

 _

 _

 _

I I

+Q -Q

 E

C

Ampere’s Law applies to any surface bounding the path C. Two possible surfaces bounded by C are
drawn above. Surface 1 passes between the plates and surface 2 passes outside of the plates. Since both
surfaces are bounded by C, Ampere’s law should give the same result for both surfaces.
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Apply Ampere’s law to surface 1. Since no current passes between capacitor plates the current passing
through the surface is Iencircled = 0 and applying Ampere’s law

∫

C

~B · d~ℓ = 0

For surface 2, the current flowing through the surface is Iencircled = I and applying Ampere’s law gives

∫

C

~B · d~ℓ = µ0I Whoops!

Since both surfaces are bounded by C, both surfaces can be used in Ampere’s law and the results for both
surfaces must be the same.

We are going to fix Ampere’s Law by adding another term that makes the contribution from surface 1
the same as that from surface 2. This term will be called the displacement current, Id.

∮

C

~B · d~ℓ = µ0(I + Id)

Comparing Ampere’s law with Faraday’s law, we would expect this additional term to depend on a changing
electric flux. The electric flux, φe, through surface 1 is,

φe = EA =
σ

ǫ0
A

where I have used the electric field of equal and opposite planes as E = σ/ε0. The charge density on the
positive plate is σ = Q/A so

φe =
A

ǫ0

(

Q

A

)

=
Q

ǫ0

Solving for Q gives
Q = ǫ0φe

The current is the derivative of the charge

dQ

dt
≡ I = ǫ0

dφe

dt
= Id

The displacement current, Id, is a quantity with the dimensions of current needed to complete Maxwell’s
equations.

Id = ǫ0
dφe

dt
= ǫ0

d

dt

∫

S

( ~E · n̂)dt

A changing electric flux creates a magnetic field.

36.1.2 Ampere’s Law for Electrodynamics

With the addition of the displacement current we can state a form of Ampere’s law that is always correct.

Definition Displacement Current : The displacement current for a surface is a
mathematical quantity that has the same units as current. The displacement cur-
rent, Id, is

Id = ǫ0
dφe

dt
= ǫ0

d

dt

∫

S

( ~E · n̂)dA,

where φe is the electric flux through the surface, and t is time.

The displacement current is formed of the time derivative of electric flux, just as Faraday’s Law uses the
time derivative of magnetic flux. The current acts as an additional source of magnetic field in Ampere’s
Law.
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Ampere’s Law for Electrodynamics: For situations where there is a changing elec-
tric field, Ampere’s Law must be modified as follows,

∮

C

~B · d~ℓ = µ0(I + Id),

where ~B is the magnetic field, C is a closed curve, ~ℓ points along the curve, I is
the real current (the moving charged particles) through the surface, and Id is the
displacement current for the surface enclosed by the curve.

A changing electric flux through a surface S produces a net magnetic field around the curve bounding
the surface.

The Displacement Current is Not a Real Current: The displacement current has
the dimensions of current but does not involve the transfer of charged particles
through the surface.

Example 36.1 Displacement Current Given Flux
Problem: A cylindrical region of space supports a changing electric field along its length. The electric flux

for the cross section of the region is computed to be φe = (100Nm2

Cs2 )t2. Compute the displacement current
as a function of time.

Solution

The displacement current, Id, is defined as

Id = ǫ0
dφE

dt
= ǫ0

d

dt
(100

Nm2

Cs2
)t2 = 2ǫ0(100

Nm2

Cs2
)t

Id = (1.77 × 10−9 A

s
)t

Example 36.2 Displacement Current in Parallel Capacitor
Problem: Two circular plates of radius 9cm are separated in air by 2.0mm, forming a parallel plate
capacitor. A battery is connected across the plates. At a particular time, t1, the rate at which the charge is
flowing through the battery from one plate to the other is 5A.

(a)What is the time rate of change of the electric field between the plates at t1?

(b)Compute the displacement current between the plates at t1, and show it is equal to 5A.

 +

 +

 +

 +

 +

 +

 +

 _
 _

 _

 _

 _

 _

 _

Side View of Capacitor

I

Definitions

I = 5A ≡ Current Flowing into Capacitor at t0

t1 ≡ Time of Calculation

Q ≡ Total Charge on One Plate of Capacitor

A ≡ Area of Capacitor Plate

E ≡ Electric field in Capacitor

σ ≡ Surface charge density

φe ≡ Electric Flux
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Strategy: Use the parallel plate capacitor formula for the electric field and identify the current as the time
rate of change of the charge on the capacitor plates.

Solution to Part (a)

(a) Compute Electric Field in Capacitor: The electric field in a parallel plate capacitor is given by

E =
σ

ǫ0

where the surface charge density σ can be related to the total charge Q by Q = σA where A is the area.
This gives an electric field of

E =
Q

Aǫ0
.

In the above expression only Q changes with time, so we can write the derivative of E as

dE

dt
=

1

Aǫ0

dQ

dt
.

(b) Equate the Current as Time Rate of Charge: The current is charge per unit time so at any instant
the current is

I =
dQ

dt

(c) Substitute and Compute: Substitute the expression for current into the derivative of the electric field,

dE

dt
=

1

Aǫ0

dQ

dt
=

I

Aǫ0
.

Substitute and solve using the area of the plates as A = πr2 = π(9cm)2 = 0.0254m2

dE

dt
=

I

Aǫ0
=

5A

(0.0254m2)(8.85 × 10−12 C2

Nm2 )
= 2.22 × 1013 V

ms

Solution to Part (b)

Compute the Displacement Current: The displacement current is defined as

Id = ǫ0
d

dt

∫

( ~E · n̂)dA = ǫ0
dφe

dt

where φe is the electric flux through a surface enclosing the field. Take the surface over which the integral is
done to be parallel and between the plates of the capacitor. The electric flux through this surface is φe = EA,
since the field is parallel to the normal of the surface. Substituting the expression for E in a parallel plate
capacitor gives

φe = EA =
Q

Aǫ0
A =

Q

ǫ0
.

Substituting this into the expression for displacement current gives

Id = ǫ0
dφe

dt
= ǫ0

d

dt

Q

ǫ0
=

dQ

dt
= I.

So at time t1, Id = 5A.
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36.2 Visualizing the Induced Electric Field

The displacement current behaves just like a normal current in Ampere’s law. If there is no real current,
Ampere’s law becomes

∫

C
~B · d~ℓ = µ0Id. If we have a cylindrically symmetric changing electric field, then

Id is cylindrically symmetric and we can apply the methods we learned for handling cylindrically symmetric
current distributions.

Example 36.3 Visualizing Induced Electric Field
Problem: A parallel plate capacitor with circular plates is connected such that it produces an electric field
directed out of the page, which increases with time. Draw the magnetic field.

Solution

Strategy: Qualitatively decide on the direction of the displacement current, then use the right hand rule
for a wire to get the direction of the magnetic field.
(a) Sketch Circular Paths: Sketch a number of circular paths
in the region containing the field, these are the boundaries of
the surfaces we will compute the flux through and the Ampe-
rian paths along which we will compute the magnetic fields.

Increasing Electric  Field Magnetic Field

(b) Compute Displacement Current through Surface: In the figure, the field points out of the page. If we
compute the electric flux, φe, with the normal in the direction of the field, then the flux is positive with this
normal. Since the field is increasing, dφe/dt > 0, the displacement current Id is directed out of the page.
(c) Reason About Shape of Magnetic Field: Since magnetic field lines must close, and the region is
cylindrical, the magnetic field lines must be circles.
(d) Use Right Hand Rule (RHR) for Wire: The displacement current acts like a real current in Ampere’s
Law (even though no charge is flowing in the region), so we can use the RHR to compute the direction. Since
the displacement current points out of the page, the B field is oriented as drawn, by the RHR for a wire.

36.3 Maxwell’s Equations

With the addition to Ampere’s law, we complete Maxwell’s equations, the set of equations that completely
describe the behavior of electric and magnetic fields

Gauss’ Law :
∮

S

( ~E · n̂)dA =
Qenclosed

ǫ0

“No Magnetic Monopoles” :

∮

S

( ~B · n̂)dA = 0
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Faraday’s Law :
∮

C

~E · d~l = − d

dt

∫

S

( ~B · n̂)dA

Ampere’s Law:
∮

C

~B · d~l = µ0I + µ0ǫ0
d

dt

∫

S

( ~E · n̂)dA

With the Lorentz force, ~F = q ~E + q~v × ~B, the interaction of charges particles and electric and magnetic
fields is completely described.

Maxwell’s equations are extraordinary in that (up to quantum corrections) they are always absolutely
correct. Maxwell’s equations have been supported by 100 years of experimentation. Therefore, if you ever
encounter a situation that appears to violate a Maxwell’s equation, you’ve blown it. I expect you to be able
to name each Maxwell equation and, in words, tell what it means.

Example 36.4 What Does Gauss’ Law Mean?
Problem: The following is the first of Maxwell’s equations,

∮

S

( ~E · n̂)dA =
Qenclosed

ǫ0

(a)What is the name of the physical law it represents?

(b)Explain in words what the equation means.

Solution to Part(a)

Gauss’ Law.

Solution to Part(b)

The electric flux through any closed surface is proportional to the net charge enclosed by the surface.
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Electromagnetic Waves

37.1 A Solution to Maxwell’s Equation

37.1.1 The Speed of Light

Maxwell’s Equations are a set of simultaneous integral equations. We can seek a solution which satisfies
all of the equations. What follows may be the most important calculation ever performed. It is however very
detailed and you are asked to understand only the results and that the results come from solving Maxwell’s
equation.
Guess a Solution To solve a set of interlinked integral equations, one must guess a possible solution and
check to see if it satisfies each equation. The first guess one makes for a differential system is always a set of
sines and cosines. Maxwell’s equations depend both on space and time, so we need sine and cosine functions
which are functions of both space and time. Sounds like a wave. Let us try the following set of fields in
Maxwell’s equations:

~E(~r, t) = E0ŷ cos(kx − ωt)

~B(~r, t) = B0ẑ cos(kx − ωt)

These are electromagnetic waves with constant maximum amplitude, E0 for the electric field and B0 for the
magnetic field. The wavenumber of the wave is k and the angular frequency ω. I have further chosen the
direction of the electric field to be ŷ and the direction for the magnetic field to be ẑ.

Try this solution in each of the Maxwell equations.

Maxwell I - Gauss’ Law We need to show that the wave equa-
tions satisfy Gauss’ law

∫

S

( ~E · n̂)dA = 0

for all Gaussian surfaces S, where I have used Q = 0 for a
wave propagating in free space, where there is no charge. The
figure to the right draws the electric component of the wave
and a rectangular Gaussian surface. The figure to the right
shows the electric component of the wave at a given time. The
side view of a Gaussian surface is shown. The surface is drawn
as a rectangle, but is actually a three dimensional parallel-
piped. Note the electric field only changes with x. The field
has the same magnitude and direction for any point with the
same x coordinate, no matter what the y and z coordinates
are. Examining the Gaussian surface shows that the same flux
goes in as comes out, so Gauss’ law is satisfied, since the total
flux out (zero) equals the total charge enclosed (zero.).

 Gaussian Surface

x

 Electric Component of Wavey
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Maxwell II - No Magnetic Monopoles Now apply Maxwell’s
second equation to the surface shown to the right. The mag-
netic field looks just like the electric field except the picture to
the right shows the x−z plane. The second Maxwell’s equation
is

∫

S

( ~B · n̂)dA = 0

which in words states that the net magnetic flux out of any
surface is zero. The magnetic component of the wave and a
Gaussian surface is drawn to the right. The magnetic flux out
of the surface is zero, therefore the second Maxwell’s equation
is satisfied (for this surface).

 Surface for Maxwell II Integral

x

 Magnetic Component of Wavez

Maxwell III - Faraday’s Law Faraday’s Law relates the change
in magnetic flux through a surface, S, to the integral of the
electric field around the curve, C, which bounds the surface.

∫

C

~E · d~ℓ = − d

dt

∫

S

( ~B · n̂)dA

Evaluate the two integrals for a path C which is ∆x wide and L
tall as drawn to the right. The corners of the path are denoted
by a, b, c, and d. Both the electric and magnetic fields are
drawn to the right. For the curve drawn, ~E ⊥ d~ℓ on the top
and the bottom, so the integral across the top and bottom is
zero. The integral around the path is then

∫

C

~E · d~ℓ =

∫

b→c

~E · d~ℓ +

∫

d→a

~E · d~ℓ

Let the left side of the path be at x0 from the origin. For
b → c, d~ℓ = ŷdy and ~E · d~ℓ = E0 cos(k(x0 + ∆x) + ωt)dy. For

d → a, d~~ℓ = −ŷdy and ~E · dℓ = −E0 cos(kx0 + ωt)dy.

 Curve Faraday's Law Applied To

x

 Electric Component of Wavey

 Magnetic Field Into Page

 Magnetic Field Out of Page

L

 a
 b

 c d
∆x

Substituting back into the integrals gives,

∫

C

~E · d~ℓ =

∫

b→c

~E · d~ℓ +

∫

d→a

~E · d~ℓ

∫

C

~E · d~ℓ =

∫

b→c

E0 cos(k(x0 + ∆x) − ωt)dy +

∫

d→a

−E0 cos(kx0 − ωt)dy

The cosine may be brought out of the integral because it depends on only x and t.

∫

C

~E · d~ℓ = E0 cos(k(x0 + ∆x) − ωt)

∫

b→c

dy − E0 cos(kx0 − ωt)

∫

d→a

dy

The two integrals are just the length of the segments L.

∫

C

~E · d~ℓ = E0 cos(k(x0 + ∆x) − ωt)L − E0 cos(kx0 − ωt)L

Now compute the flux through the surface bounded by the path. If the path is thin (∆x is small),
then the magnetic field does not change much over the slice and the magnetic flux can be approximated by
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φm = ( ~B · n̂)A. The positive normal for the curve selected is n̂ = ẑ. The area of the surface bounded by the
curve is A = L∆x. The magnetic flux is then

φm = ( ~B · n̂)A = B0ẑ cos(kx0 − ωt) · ẑ(L∆x) = B0 cos(kx0 − ωt)L∆x

The negative time derivative of the flux is

−dφm

dt
= − d

dt
B0 cos(kx0 − ωt)L∆x = −LB0∆xω sin(kx0 − ωt)

Substitute everything back into Faraday’s law,
∫

C

~E · d~ℓ = − d

dt

∫

S

( ~B · n̂)dA

E0 cos(k(x0 + ∆x) − ωt)L − E0 cos(kx0 − ωt)L = −LB0∆xω sin(kx0 − ωt)

Cancel L and divide by ∆x,

E0
cos(k(x0 + ∆x) − ωt) − cos(kx0 − ωt)

∆x
= −B0ω sin(kx0 − ωt)

Now let ∆x ⇒ 0,

E0
cos(k(x0 + ∆x) − ωt) − cos(kx0 − ωt)

∆x
= E0

d

dx
cos(kx − ωt) = −E0k sin(kx − ωt)

−E0k sin(kx − ωt) = −B0ω sin(kx0 − ωt)

So the wave equations satisfy Faraday’s law if

E0k = B0ω

Maxwell IV - Ampere’s Law Now try the wave equations in
Ampere’s law,

∫

C

~B · d~ℓ = µ0I + µ0ε0
d

dt

∫

S

( ~E · n̂)dA

There is no current flowing in the region, therefore

∫

C

~B · d~ℓ = µ0ε0
d

dt

∫

S

( ~E · n̂)dA

This relation looks very much like Faraday’s law with the elec-
tric and magnetic fields exchanged. We can use the same
method on the path drawn to the right as was used for Fara-
day’s law.

 Curve Ampere's Law Applied To

x

 Magnetic Component of Wavez

 Electric Field Into Page

 Electric Field Out of Page

L

 a
 b

 c d
∆x

Evaluate the two integrals for a path C which is ∆x wide and L tall as drawn to the right. The corners of

the path are denoted by a, b, c, and d. Both the electric and magnetic fields are drawn above. For the curve
drawn, ~B ⊥ d~ℓ on the top and the bottom, so the integral across the top and bottom is zero. The integral
around the path is then

∫

C

~B · d~ℓ =

∫

b→c

~B · d~ℓ +

∫

d→a

~B · d~ℓ

Let the left side of the path be at x0 from the origin. For b → c, d~ℓ = ẑdz and ~B · d~ℓ = B0 cos(k(x0 + ∆x) +

ωt)dz. For d → a, d~ℓ = −ẑdz and ~B · d~ℓ = −B0 cos(kx0 + ωt)dz. Substituting back into the integrals gives,
∫

C

~B · d~ℓ =

∫

b→c

~B · d~ℓ +

∫

d→a

~B · d~ℓ
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∫

C

~B · d~ℓ =

∫

b→c

B0 cos(k(x0 + ∆x) − ωt)dz +

∫

d→a

−B0 cos(kx0 − ωt)dz

The cosine may be brought out of the integral because it depends on only x and t.
∫

C

~E · d~ℓ = B0 cos(k(x0 + ∆x) − ωt)

∫

b→c

dz − B0 cos(kx0 − ωt)

∫

d→a

dz

The two integrals are just the length of the segments L.
∫

C

~B · d~ℓ = B0 cos(k(x0 + ∆x) − ωt)L − B0 cos(kx0 − ωt)L

Now compute the electric flux through the surface bounded by the path. If the path is thin (∆x is
small), then the electric field does not change much over the slice and the electric flux can be approximated

by φe = ( ~E · n̂)A. For a positive normal for the curve selected n̂ = −ŷ. The area of the surface bounded by
the curve is A = L∆x. The electric flux is then

φe = ( ~E · n̂)A = E0ŷ cos(kx0 − ωt) · (−ŷ)(L∆x) = −E0 cos(kx0 − ωt)L∆x

The time derivative of the electric flux is

dφe

dt
=

d

dt
(−E0) cos(kx0 − ωt)L∆x = −LE0∆xω sin(kx0 − ωt)

Substitute everything back into Ampere’s law,
∫

C

~B · d~ℓ = µ0ε0
d

dt

∫

S

( ~E · n̂)dA

B0 cos(k(x0 + ∆x) − ωt)L − B0 cos(kx0 − ωt)L = µ0ε0LE0∆xω sin(kx0 − ωt)

Cancel L and divide by ∆x,

E0
cos(k(x0 + ∆x) − ωt) − cos(kx0 − ωt)

∆x
= −µ0ε0E0ω sin(kx0 − ωt)

Now let ∆x ⇒ 0,

B0
cos(k(x0 + ∆x) − ωt) − cos(kx0 − ωt)

∆x
= B0

d

dx
cos(kx − ωt) = −B0k sin(kx − ωt)

−B0k sin(kx − ωt) = −µ0ε0E0ω sin(kx0 − ωt)

So the wave equations must also satisfy
B0k = µ0ε0E0ω

Solve for Wave Velocity Substituting our test wave equations into Maxwell’s equations has yielded two
equations that the wavenumber, angular frequency, and the magnitude of the electric and magnetic field
must satisfy for the waves to be a solution of Maxwell’s equations:

B0k = µ0ε0E0ω

E0k = B0ω

Rearrange the second equation to yield,

E0 =
ω

k
B0.

Substitute back into the first equation,

B0k = µ0ε0
ω

k
B0ω

Cancel B0 and rearrange,

1

µ0ε0
=

(

ω

k

)2
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√

1

µ0ε0
=

ω

k

The quantity ω
k = λf is the speed of the wave

ω

k
= λf = v =

1√
µ0ε0

where λ is the wavelength, f is the frequency, and v is the wave velocity. Therefore, to be an electromagnetic
wave, the wave must travel at a velocity v = 1√

µ0ε0

A second result, not as important, but somewhat unusual, is found by substituting back into the second
relation derived from Maxwell equation

E0 = B0
ω

k
= B0

1√
µ0ε0

= vB0

Therefore, the magnitude of the electric component of an electromagnetic wave is the velocity of the wave
multiplied by the magnitude of the magnetic component.

37.1.2 For Cal III People Only

Well that was a pain. If you have had enough Cal III to understand div, grad, and curl, the result
becomes much easier. If you have not had Cal III skip this section. Using div, grad, and curl we can restate
Maxwell’s equations,

∇ · ~E =
ρ

ε0
Gauss’ Law

∇ · ~B = 0 No Magnetic Monopoles

∇× ~E = −∂ ~B

∂t
Faraday’s Law

∇× ~B = µ0
~j + ε0µ0

∂ ~E

∂t
Ampere’s Law

where ρ is the volume charge density and ~j is the current density.
If there are not free charges or currents, the equations have a nicely symmetric form.

∇ · ~E = 0 ∇ · ~B = 0

∇× ~E = −∂ ~B

∂t
∇× ~B = ε0µ0

∂ ~E

∂t
Take the curl of Ampere’s law

∇×∇× ~B = ε0µ0
∂∇× ~E

∂t
Substitute Faraday’s law,

∇×∇× ~B = −ε0µ0
∂2 ~B

∂t2

The curl has the property that ∇× (∇× ~A) = ∇(∇ · ~A) −∇2 ~A, so

∇×∇× ~B = ∇(∇ · ~B) −∇2 ~B = −ε0µ0
∂2 ~B

∂t2

or if we use ∇ · ~B = 0,

∇2 ~B = ε0µ0
∂2 ~B

∂t2

So each component of the magnetic field satisfies an equation like

∂2Bx

∂x2
− ε0µ0

∂2Bx

∂t2
= 0

This kind of equation is called a wave equation and its solutions are of the form sin(kx − ωt). The waves
have speed 1/

√
ε0µ0. To me this is tons easier than the derivation in the previous section.
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37.2 Electromagnetic Waves

37.2.1 Let There Be Light

So you’re Maxwell and you’ve just proved that electromagnetic waves exist and propagate through space
with velocity v = 1√

µ0ε0
. So naturally, you punch 1√

µ0ε0
into your calculator and find

v =
1√
µ0ε0

=
1

√

(4π × 10−7 Tm
A )(8.85 × 10−12 C2

Nm2 )
= 3 × 108 m

s

which is the speed of light.

Speed of Light in Vacuum: The speed of light in vacuum is denoted by the symbol
c and is always c = 3 × 108 m

s .

The velocity of an electromagnetic wave, computed from Maxwell’s equations and the universal constants
ε0 and µ0 is the speed of light, c. Therefore, light is an electromagnetic wave!!!! In this class, you have
measured both ε0 and µ0 and have mastered the techniques to carry out the above calculation, so you can
show this crucial insight about the universe.

Light is an Electromagnetic Wave: Light, the everyday phenomena that allows
us to see stuff, is actually an electromagnetic wave formed of crossed electric and
magnetic fields.

All of a sudden, electricity and magnetism is unified with optics and we’re on the slippery slope to
relativity and quantum mechanics. Every once in a while in science, you have a moment where the universe
breaks apart and reforms before your eyes.

37.2.2 Summary of the Results of the Wave Solution to Maxwell’s Equations

The results of the calculation of the speed of light can be generalized to yield the following important
properties of an electromagnetic wave, light.

Speed of Electromagnetic (EM) Waves: There is a solution to Maxwell’s Equa-
tions which is a travelling wave, with velocity that of the speed of light. The speed
of light, c, is related to the constants in Maxwell’s Equations by

c =
1√
µ0ε0

∼= 3 × 108 m

s

This is the speed of light in vacuum, the velocity is reduced in a material.

Relation of Electric and Magnetic Field Magnitudes in an EM Wave for a Plane
Wave in a Vacuum : The magnitude of the electric and magnetic fields in the wave
solution of Maxwell’s Equations are related by

| ~E| = c| ~B|

The Poynting Vector : The Poynting vector, ~S, is defined as

~S ≡
~E × ~B

µ0

Propagation Direction of an EM Wave : The direction that an EM wave travels
is the same as the direction of the Poynting vector, ~S.

All Components Perpendicular: The electric and magnetic components of an elec-
tromagnetic wave are perpendicular. Both components are perpendicular to the
propagation direction given by the Poynting vector.
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Example 37.1 Draw an Electromagnetic Wave
Problem: Draw an electromagnetic wave where the electric field obeys ~E = E0ŷ cos(kx − ωt) and the

magnetic field obeys ~B = B0ẑ cos(kx − ωt).

Solution

Strategy: Represent the wave as a series of arrows, use the Poynting vector for the direction of propagation.
(a) Think About Real Wave: A plane wave fills space producing an oscillating electric and magnetic field
everywhere. We can’t draw this. What we can draw is the magnitude of the electric and magnetic field
along the coordinate axis in the direction of propagation.
(b) Compute Direction of Propagation: Use the Poynting vector to compute the direction of the other

field component or the direction of propagation if given both ~E and ~B.
(c) Draw the Wave: Draw oscillating electric and magnetic fields as in the figure, making sure that ~E × ~B
points in the direction of propagation and that the spacing of the crests is the wavelength.

x

y(E)

z(M)

Direction

Example 37.2 Electromagnetic fields in space
Problem: At t = 0, we measure the electric and magnetic components of an electromagnetic wave at some
point. The electric field component is ~E = 100N/Cx̂ and the magnetic field points in the +ẑ direction.

(a)What is the magnitude of the magnetic field at t = 0 at the point where the electric field was
measured?

(b)What is the Poynting vector?

(c)What is the direction of propagation?

Solution to Part(a)

The magnitude of the magnetic component of an electromagnetic wave is related to the magnitude of the
electric component by

B =
E

c
=

100N
C

3 × 108 m
s

= 3.33 × 10−7T.

Solution to Part(b)
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The Poynting vector is defined as

~S =
~E × ~B

µ0
=

(100N
C x̂) × (3.33 × 10−7Tẑ)

4π × 10−7 Tm
A

= 26.5
W

m2
(x̂ × ẑ).

The cross product x̂ × ẑ can be evaluated using the Right Hand Rule, x̂ × ẑ = −ŷ.

~S = −26.5
W

m2
ŷ

Solution to Part(c)

The wave propagates in the direction of the Poynting vector. Therefore, the wave propagates in the −ŷ
direction.

37.2.3 Features of Moving Waves

Let’s review some features of travelling waves from UPI.

Equation of a Moving Wave: Waves that move in a single direction vary in both
space, x, and time, t. The equation for a wave which varies sinusoidally is

h(x, t) = Amax sin(kx − ωt + δ)

where Amax is the maximum amplitude, k is the wave number, ω is the angular
frequency, and δ is the phase difference. The amplitude of the wave at any specified
point in space and time is h(x, t). Amax is the maximum amplitude of the wave as
measured from its average amplitude (this is always positive).

Period and Frequency: The pe-
riod, T , is the time between suc-
cessive crests of the wave. The
frequency, f is the number of full
waves in a unit time, and is re-
lated to the period by

f = 1/T

h

T

t

 Amax

 −Amax

Units of Frequency: Frequency is measured in Hertz,

1Hz = 1s−1

Frequency and Angular Frequency: The frequency, f , of a wave has a circular
analog called the angular frequency, ω, defined as

ω = 2πf

The angular frequency is the time rate of change of the argument of the sine function
representing the wave.
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Wavelength and Wave Number:
The wavelength, λ, is the dis-
tance between successive crests of
the wave. The wavenumber, k,
is related to the number of full
waves in a unit distance, and is
related to the wavelength by

k = 2π/λ

It is the position rate of change of
the argument of the sine function
representing the wave.

h

x

λ

 Amax

 −Amax

Speed of a Moving Wave: The speed, vwave, of any moving wave is related to its
wavelength, λ, and frequency, f , by

vwave = λf =
ω

k

Example 37.3 Using the Wave Velocity Equation
Problem: A laser produces light at a wavelength of 500nm.

(a)What is the speed of laser light?

(b)What is the frequency of the light wave?

Solution to Part(a)

The speed of light in a vacuum is c = 3 × 108 m
s .

Solution to Part(b)

The frequency of light is given by f = c/λ = 3 × 108 m
s /5 × 10−7m = 6 × 1014Hz.

Example 37.4 Writing a Wave Equation Based on a Graph
Problem: The amplitude of a wave at t = 0 is shown below. It takes two seconds for the wave to complete
a cycle. Write an equation for the wave. Give a numerical value for each constant you introduce.
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Solution

The period of the wave is given as T = 2s and therefore the frequency is f = 1/T = 0.5Hz and the angular
frequency ω = 2πf = πs−1. The wavelength, which can be read off the graph, is λ = 4m, which gives a
wavenumber k = 2π/λ = 0.5πm−1 and the wave has a maximum at x = 0, so it is a cosine wave, a sine wave
with phase difference δ = π

2 . The amplitude of the wave can be read from the graph.

h(x, t) = A sin(kx − ωt +
π

2
) = A cos(

2π

λ
x − 2πft) = (5m) cos((0.5πm−1x) − (πs−1t))

Note how the units cancel in the argument of the cosine function.

37.2.4 The Spectrum

All light waves are electromagnetic waves. Different wavelengths are used for different purposes. The
collection of all frequencies and wavelength is called the electromagnetic spectrum. The important features
of the electromagnetic spectrum are summarized in the table below. Note the units on the wavelengths.
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Name Wavelength Frequency(Hz)
AM Radio 600m − 200m 5 × 105Hz − 1.5 × 106Hz

Short Wave Radio 187m − 5.55m 1.6 × 106Hz − 5.4 × 107Hz
TV and FM Radio 5.55m − 0.187m 5.4 × 107Hz − 1.6 × 109Hz

Microwaves and Radar 187mm − 10mm 1.6 × 109Hz − 3 × 1010Hz
Millimeter waves and telemetry 10mm − 1mm 3 × 1010Hz − 3 × 1011Hz

Infrared 1mm − 750nm 3 × 1011Hz − 4 × 1014Hz
Visible 750nm − 400nm 4 × 1014Hz − 7.5 × 1014Hz

Visible(Red) 750nm − 625nm
Visible(Orange) 625nm − 590nm
Visible(Yellow) 590nm − 565nm
Visible(Green) 565nm − 520nm
Visible(Cyan) 520nm − 500nm
Visible(Blue) 500nm − 435nm
Visible(Violet) 435nm − 400nm

Ultraviolet 400nm − 10nm 7.5 × 1014Hz − 3 × 1016Hz
X-Rays < 10nm > 3 × 1016Hz

Gamma-Rays < 1 × 10−12m > 1 × 1020Hz

The government of a country owns the rights to the electromagnetic spectrum in the region bounded by
the international borders of the country and can sell licenses to use that spectrum to companies wishing to
use electromagnetic waves of a given wavelength for communication. A 700MHz = 7 × 108Hz wide chunk
of the television and microwave spectrum to be used for high speed wireless devices is expected to fetch 2.6
billion dollars for the US government.

37.3 Mechanical Properties

Electromagnetic waves carry energy from place to place in their electric and magnetic fields. The energy
in a beam of light is just the energy stored in the electric and magnetic fields and this energy moves at the
speed of light. The intensity of a beam of light is the energy crossing a unit area per unit time and measures
the rate at which energy is transferred.

Definition of Intensity: The intensity, I(t), of a wave is the energy, U(t), crossing
a unit area, A, per unit time. This is the same as power, P (t), per unit area,

I(t) =
U(t)

At
=

P (t)

A

Units of Intensity: The SI units for intensity are

J

m2s
or

W

m2
.

The intensity changes as the electric and magnetic fields of the wave oscillate. The intensity is the energy
density in the field multiplied by the velocity of the wave, c, I(t) = uc, where u is the total energy density.

The total energy density is the sum of the electric energy density, ue = 1
2ε0| ~E|2 and the magnetic energy

density, um = | ~B|2
2µ0

. Therefore the intensity is

I(t) =
1

2

(

ε0| ~E|2 +
| ~B|2
µ0

)

c

Using E = cB and c = 1/
√

ε0µ0 this can be rewritten,

I(t) = c
| ~B|2
µ0

= c
B2

0

µ0
sin2(kx − ωt)
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Light waves oscillate vary rapidly, so rapidly that we don’t notice the instantaneous changes in intensity, so
it is more useful to know the average intensity, Iave. If we average the intensity over one period, T , we find

Iave =

∫ T

0

I(t)dt = c
B2

0

2µ0

We will drop the ave and write I = Iave.

Average Intensity: In general, when we say intensity, we are referring to the average
intensity of an electromagnetic wave. The average intensity is the intensity averaged
over one period of the wave. If we ever mean the instantaneous intensity, we will
explicitly say so.

Intensity of an EM Wave : The average intensity, I, of an EM wave can be related
to the average magnitude of the Poynting vector

I = |~Save|

or to the maximum amplitude of the electric ~E0 and magnetic B0 fields

I =
~E2

0

2µ0c
=

c ~B2
0

2µ0
=

cε0
~E2

0

2

A number of other expressions are possible using c = 1√
ε0µ0

and E = cB.

Light waves also carry momentum. For light the total energy in the wave ETOT is related to the total
momentum, p, by p = ETOT /c. The intensity divided by the speed of light is the momentum per unit
area per unit time transferred by the wave. If the light falls on a surface, I/c momentum per unit time is
transferred to the surface per unit surface area. But momentum transfer per time is force, so I/c force per
unit area is exerted on the surface by the light wave. We call force per unit area, pressure.

Radiation Pressure : If an EM wave is normally incident on a surface which totally
absorbs it, then the wave exerts a pressure, Pr, related to the intensity, I, of the
wave

Pr = I/c

If the radiation is completely reflected, then the radiation pressure is doubled. If it
is incident at an angle to the surface, only the normal component “pushed”.

Example 37.5 Intensity of KUAF Signal
Problem: Assume the local public radio station KUAF radiates 50000W of power in radio waves uniformly
in all directions (in a uniform sphere).

(a)What is the intensity of the waves at 1km = 1000m from the station?

(b)What is the maximum amplitude of the electric field at 1km from the station?

(c)What is the maximum amplitude of the magnetic field at 1km?

Solution to Part(a)

Intensity, I, is power, P , per unit area; so divide the total power by the surface area of a sphere with radius
r = 1000m.

I =
P

4πr2
=

50000W

4π(1000m)2
= 3.98 × 10−3 W

m2

Solution to Part(b)
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The the intensity in related the magnitude of the electric component of the field by I = 1
2cǫ0E

2
0 , where E0

is the amplitude of the electric field. So for the field,

E0 =

√

2I

cǫ0
=

√

2(3.98 × 10−3 W
m2 )

(3 × 108 m
s )(8.85 × 10−12 C2

Nm2

) = 1.73
N

C
.

Solution to Part(c)

The magnetic field, B0, in an EM wave is related to the electric field by B0 = E0/c = 1.73N
C/3 × 108 m

s =
5.77 × 10−9T.

37.4 Antennae for EM Waves

In general, an antenna can be a source (transmitter) or a detector (receiver) of EM waves. This section
discusses antennae, which detect the electric or magnetic components of an electromagnetic wave. Elec-
tromagnetic waves are useful in the form of radio and microwaves for the transmission of information. An
antenna is used to detect the waves. The antenna produces an EMF across its terminals that changes with
the amplitude of the wave. The techniques we have already developed can be used to select antenna that
detect either the magnetic or electric component of the wave.

Match Wave Component with
Antenna : Antenna can be con-
structed to detect either the mag-
netic or electric component of an
electromagnetic wave. A dipole
antenna (a) detects the electric
potential difference between its
two arms. A loop antenna (b)
detects the EMF generated by a
changing magnetic flux.

(a) Dipole 

Antenna
(b) Loop 

Antenna

Axis

Align Dipole Antenna for Maximum Reception : The antenna will generate the
maximum signal when the greatest potential difference exists between the two pieces
of the antenna. The maximum potential difference occurs when the axis of the
antenna (as shown above) aligns with the electric field of the wave.

Align Loop Antenna for Maximum Reception : For maximum signal, we need
maximum induced EMF in the loop, thus maximum change in magnetic flux, so
the magnetic field of the electromagnetic wave must align with the normal of the
surface enclosed by the loop.

Example 37.6 Selecting Antennae
Problem: An electromagnetic wave has electric field ~E(t) = 100N/C sin(ωt)ŷ and magnetic field | ~B(t)| =

| ~E|/cẑ.

(a)What kind of antenna would you use to detect the electric field of this wave?

(b)How would you place the antenna for maximum reception of the electric component of the wave?

(c)What kind of antenna would you use to detect the magnetic field of this wave?
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(d)How would you place the antenna for maximum reception of the magnetic component of the
wave?

Solution to Part(a)

Since the electric field causes a force (and therefore a potential difference) in the direction of the field, a
dipole antennae is best.

Solution to Part(b)

The antenna’s axis should be parallel to the electric field, in the ŷ direction.

Solution to Part(c)

Since the electric potential difference here is caused by a changing flux through an area, a loop works best.

Solution to Part(d)

To maximize the changing flux, you want the normal of the loop along the magnetic field in the ẑ direction.
Therefore the loop should lie in the x − y plane.

Example 37.7 Compute EMF for Loop Antenna
Problem: A loop antenna with radius 20cm is aligned for maximum reception to a changing magnetic field
B(t) = 2.0 × 10−9Tsin((12.6s−1)t). Compute the induced EMF as a function of time.

Solution

Strategy: Compute the flux as a function of time, then apply Faraday’s Law to get the EMF.

(a) Sketch Wave and Antenna: Sketch the electromag-
netic wave and the antenna correctly oriented for maxi-
mum reception, so the magnetic field aligns with the nor-
mal of the loop. Maximum reception is when the plane of
the loop is perpendicular to the magnetic field. loop (edge view)

magnetic field

(b) Compute Magnetic Flux through Loop: Compute the flux, φm(t), as a function of time assuming the

wave changes little over the area of the loop, so φm = A| ~B(t)|, where A is the area of the loop and | ~B(t)| is
the magnitude of the field. The area of the loop is A = πr2 = 0.13m2. The flux is then

φm = A| ~B(t)| = 2.6 × 10−10Wb
∣

∣sin((12.6s−1)t)
∣

∣

(c) Apply Faraday’s Law Technique: Compute Induced EMF using

emf = −dφm

dt
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Find the magnitude of the emf

emf =

∣

∣

∣

∣

−dφm

dt

∣

∣

∣

∣

= 2.6 × 10−10Wb

∣

∣

∣

∣

d

dt

[

sin(12.6s−1t)
]

∣

∣

∣

∣

= (12.6s−1) · 2.6 × 10−10Wb
∣

∣cos(12.6s−1t)
∣

∣

|emf | = 3.3 × 10−9V
∣

∣cos((12.6s−1)t)
∣

∣

37.5 Polarization

Light is an electromagnetic wave and is described by the propagation of oscillating electric and magnetic
fields. The polarization of a wave is usually expressed by the direction of the oscillating electric field vector; if
the electric field oscillates in a plane the wave is said to be linearly polarized. Light can easily be a collection
of electromagnetic waves with random polarizations. Such light is unpolarized.

37.5.1 Polarization

For most light, the direction of the electric vectors is random, changing with time and from place to
place in the wave. By passing the light wave through a polarizer, we can arrange for the electric vector to
oscillate in a single direction like the x̂ direction. The simplest polarizer is regular array of conducting wires,
as shown below. If a light wave with random electric vector is incident on the polarizer as in figure (a), the

component of the electric field parallel to the wire, ~E‖ causes charge to flow and loses energy. Therefore,
after passing through the polarizer as in figure (a), only the component of the electric field perpendicular to

the wire survives, ~E⊥.

 wires

 Figure(a) Field Before Encountering Polarizer

 wires

 Figure(b) Field After Encountering Polarizer

 transmission axis

θ

 E0

 Eperp

 Eperp

 E||

Polarization Direction (Convention): The axis of polarization is defined by con-
vention to be the axis along which the electric field is oscillating.

Unpolarized Light: Unpolarized light has multiple polarizations in random direc-
tions.

Transmission Axis: The transmission axis of the polarizer is the direction of polar-
ized light produced by the polarizer.
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We can use the above picture to determine how the intensity of the light wave is affected as it passes
through the polarizer. The magnitude of the electric field changes from E0 to E0 cos θ, where θ is the
angle between the incident field and the transmission axis. Since the magnetic field is proportional to the
magnetic field and both the magnetic and electric energy density depends on the square of the field, the
intensity changes from I0 to I0 cos2 θ. If unpolarized light is shined on a polarizer, polarized light of half the
initial intensity is produced.

Malus’ Law: Consider polarized
light of a certain intensity, Ii, in-
cident at a certain angle, β, to
the transmission axis of a polar-
izer. The intensity of light trans-
mitted through the polarizer It is
given by Malus’ Law

It = Ii cos2 β
transmission

Ii

It

incident polarization axis

β

Unpolarized Light Halved by Polarizer: With a bit of calculus, we find that the
transmitted intensity for initially unpolarized light is half that of the incoming light.

Example 37.8 Three Polarizers
Problem: Two polarizing sheets have their transmission axes crossed so that no light gets through. A third
sheet is inserted between the first two such that its transmission axis makes an angle θ with that of the first
sheet. Unpolarized light of intensity 0.2mW

m2 is incident on the first sheet. Find the intensity of the light
transmitted through all three sheets if

(a)θ = 15◦ and

(b)θ = 75◦.

Solution to Part(a)

If the middle sheet makes an angle θ1 = 15◦ with the first sheet, it makes an angle θ2 = 90◦ − θ1 = 75◦ with
the second sheet since the two outside polarizers must be at an angle of 90◦ with each other. A polarizer
reduces the intensity of unpolarized light by a factor of 2, so if I0 is the intensity of the light shining on
the first, then I1 = I0/2 reaches the middle polarizer. The middle polarizer transmits light of an intensity
I2 = I1 cos2(θ1). The third polarizer transmits I3 = I2 cos2(θ2). So in terms of the incident intensity

I3 = I0
cos2(θ1) cos2(θ2)

2
= (2 × 10−4 W

m2
)
cos2(15◦) cos2(75◦)

2
= 6.25 × 10−6 W

m2

Solution to Part(b)

The answer is the same as above since 75◦ +15◦ = 90◦. This just shines the light through the polarizer state
in (a) from the other side.

37.5.2 Polarization Mechanisms

So how do we get polarized light. There are a number of natural and artificial ways to produce polarized
light.

Polarization by transmission Polarization by absorption occurs when light is incident on a material
which absorbs light which oscillates perpendicular to a transmission axis. The light which goes through
the polarizer is polarized in the direction of the transmission axis.
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Polarization by reflection Any reflected light is partially polarized to an axis parallel to the reflection
interface. However, at a particular angle of incidence, called the polarization angle θp, the reflected
light is totally polarized. We will discuss this in Course Guide 38.

Polarization by scattering Light can be absorbed by a material, then re-radiated. This is called
scattering. Some of the scattered light travels in a direction perpendicular to the incident direction.
If the incident light is polarized, the reradiated light is polarized in the same direction. If the incident
light is unpolarized, the reradiated light which is perpendicular to the incident light has two directions
along which it is perfectly polarized. Air molecules absorb and re-radiate blue light better than red
light, which has interesting effects as we will see.

Polarization by birefringence Some materials will split a single beam of incoming light into two beams
travelling at different speeds with mutually perpendicular polarizations.

37.5.3 Circular Polarization

When I looked polarizers up on Google, most of the hits were for circular polarizers. If you take light
polarized in the x̂ direction and add to it light polarizer in the ŷ direction but 90◦ out of phase you produce
circularly polarized light. In circularly polarized light, the electric vector traces out a circle around the
propagation direction with the same frequency as the light.
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Chapter 38

Light

38.1 Light and Matter

38.1.1 Index of Refraction

Visible light or any light is an electromagnetic wave, a wave made of crossed electric and magnetic fields,
with velocity c = 1/

√
ε0µ0. When an electric field is applied to a material, the field is reduced by a factor

of the dielectric constant κ. The field of a point charge in vacuum is q/4πε0r
2 and the field in a material

is q/4πκε0r
2. Since an electric field can be found by summing the fields of point charges, we can account

for the effect of the material by replacing ε0 with κε0. Likewise a magnetic field is found by summing the
Biot-Savart law over the currents. The Biot-Savart law in vacuum is |B| = µ0

4π I sin θ/r2. In a material the

magnetic field is increased by a factor of Km, the relative permeability to |B| = Kmµ0

4π I sin θ/r2, so we can
account for the effect of the magnetic response of a material by replacing µ0 with Kmµ0.

Speed of Light in Material: The speed of light in a material, cmatter with dielectric
constant κ and relative magnetic permeability Km is

cmatter =
1√

κε0Kmµ0

The magnetic permeability can be very slightly less than 1 but is usually bigger than 1. The dielectric
constant is always greater than 1. The product κKm is always greater than one, so the speed of light in a
material is less than the speed of light in vacuum.

Light Slows Down in a Material: The speed of light in a material is lower than
the speed of light in vacuum.

The amount light slows down in the material is the only property of the material we need to do optics.
It is convenient to report the amount light slows as the ratio of the speed of light in a vacuum to the speed
of light in a material. This ratio is given the name the index of refraction of the material and is given the
symbol n.

Speed of Light in a Material: When light travels in a material, its speed (cn) is
less than the speed of light in a vacuum. The ratio of these speeds is called the
index of refraction (n)

n ≡ c

cn
=

√

κKm

Sizes of the Index of Refraction: The index of refraction has no units since it is a
ratio of velocities. The index of refraction in a vacuum is defined to be 1. The index
of refraction of air is very close to 1. Water has an index of refraction of 4/3 = 1.33.

The table below lists the index of refraction for some common materials at a few wavelengths.
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Material Index at 1000nm Index at 550nm Index at 365nm
Fused Silica (SiO2) 1.450 1.460 1.474

Flint Glass 1.586 1.607 1.646
Crown Glass 1.501 1.513 1.532

Water 1.393 1.333 1.532
Gallium Arsenide 3.492 4.333 3.601

Sodium Chloride (Salt) 1.532 1.552 1.650

Notice, the index of refraction is slightly different for different wavelengths, so the index of refraction
is a function of wavelength n(λ). This means the speed of light changes with wavelength. The range of
wavelengths listed is a small piece of the electromagnetic spectrum, so the speed of light in a material for a
radio wave might be quite different than the speed of light for visible light.

Dispersion: The index of refraction changes with frequency.

Dispersion is responsible for the rainbow of light produced by a prism.
The index of refraction changes with frequency because the dielectric constant and relative permeability

change with frequency. The dielectric constants and relative permeabilities we have been using are static,
measured at zero frequency. The static dielectric constant and static relative permeability cannot reliably be
used to predict the speed of light in the material, you have to use the constants measured at the frequency
of the light.

38.1.2 Wave Properties of Light in Matter

A light wave in a material is still a light wave, but with lower velocity, and it still obeys the relationship
between the frequency, wavelength, and velocity of a wave:

Frequency Wavelength Relationship: The frequency, f , is related to the wave-
length of light, λ, by

cn = λf

where cn is the velocity of light in the material in which the light is travelling. Note
this is the same relationship for any wave, vwave = λf .

As light travels between a vacuum and some material the velocity changes, but the frequency does not,
and therefore the wavelength changes.

Frequency Doesn’t Change: The frequency of light does not change as it passes
through an interface into another material.

Wavelength of Light in a Ma-
terial : A consequence of the
reduced speed is that the wave-
length of the light in the material,
λn is reduced from its wavelength
in a vacuum, λ

λn =
λ

n

n



vacuum

λ λn

Example 38.1 Speed of Light in Materials
Problem: A 500nm laser is incident on a sheet of Lucite(TM) which has index of refraction nLucite = 1.5.
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(a)What is the speed of the laser light in air?

(b)What is the wavelength of the laser light in air?

(c)What is the frequency of the light in air?

(d)What is the speed of the laser light in the Lucite(TM)?

(e)What is the frequency of the light in Lucite(TM)?

(f)What is the wavelength of the light in Lucite(TM)?

Solution to Part(a)

The speed of light in air is approximately the speed of light in a vacuum, cair ≈ c = 3 × 108 m
s .

Solution to Part(b)

The wavelength is given in the problem, you just had to be able to correctly interpret the phrase “a 500nm
laser”. λair = 500nm.

Solution to Part(c)

The frequency, f , of the laser light is found using c = λf .

fair =
cair

λair
=

3 × 108 m
s

5 × 10−7m
= 6 × 1014s−1

Solution to Part(d)

Light moves slower in a material.

cLucite =
c

nLucite
=

3 × 108 m
s

1.5
= 2 × 108 m

s

Solution to Part(e)

The frequency of the light does not change when it enters a material, fLucite = fair = 6 × 1014s−1.

Solution to Part(f)

The wavelength of the laser light in the Lucite(TM) can be found using c = λf ,

λLucite =
cLucite

fLucite
=

2 × 108 m
s

6 × 1014s−1
= 333nm

or

λLucite =
λ

nLucite
=

5 × 10−7m

1.5
= 333nm

38.2 Reflection at a Plane Interface

38.2.1 Light Rays

A light wave, if it interacts with objects of a size comparable to its wavelength, will show all the compli-
cated interference effects one sees with water waves on a pond. Visible light has a wavelength from 350nm to
700nm. The wavelength of light is most conveniently measured in nanometers(nm), where 1nm = 1×10−9m.
Since the wavelength of visible light is so much smaller than the size of the lenses, mirrors, and window panes
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that we will consider over the next few chapters, the wave character of light is hidden and light can be taken
to be a geometric ray travelling in a straight line.

When light strikes a surface, the electric and magnetic components are altered in the material as described
earlier. All of Maxwell’s equations must be satisfied at the surface, so Gauss’ law must be satisfied for a
pillbox enclosing the surface and Ampere’s law must apply to an Amperian path encircling the surface. To
satisfy all of Maxwell’s equation, a reflected wave that bounces off the surface and a refracted wave that
enters the material, but travels at a different angle are required. All three, the incident, the reflected, and
the refracted ray have the same frequency.

38.2.2 Reflection at Plane Interfaces

If a light ray strikes a plane surface, some of the light bounces off the surface, is reflected, and some of
the light goes through the surface and is transmitted. For a smooth surface, the reflected light makes the
same angle with the surface normal as the incoming light.

Law of Reflection: Consider light that is incident on a surface/interface at a certain
angle (θi). The reflected light leaves the surface/interface at an angle (θr) related
to the incident angle, (θi), by the law of reflection,

θi = θr

That is to say, light reflects from a point on the interface at the same angle it
arrived.

Angles and the Normal to the Interface: An interface is the boundary between
two materials. At any point on the interface, a line can be imagined which is
perpendicular (normal) to the interface. All angles in geometric optics are measured
with respect to the normal.

The incident and reflected rays are drawn to the right. When
you look into a mirror, the light appears to come from the line
traced back from the reflected ray. This direction is drawn as
a dashed line. All angles are measured from the normal.

mirror

 incident

 reflected

θr

θi

38.3 Snell’s Law - Refraction at Plane Interfaces

38.3.1 Refraction at Planes Interfaces - Snell’s Law

When a light ray strikes an interface between two transparent materials at an angle, some of the light is
reflected, but the rest goes through the interface, and is bent either toward or away from the surface normal.
The bending of the light ray as it passes through the interface is called refraction. The amount the light ray
is refracted is governed by Snell’s law:
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Law of Refraction (Snell’s Law): If the light travels from a material with index of
refraction, ni and is transmitted across an interface into another material with index
of refraction, nt, and the angle of incidence at the interface between the material
is, θi, to the normal then the angle of transmission θt is related by Snell’s Law

ni sin θi = nt sin θt

If you play with Snell’s law a bit, you find that as light travels from a lower index of refraction to a higher
index of refraction, the light is bent closer to the surface normal. As light travels from a higher to lower
index of refraction, the light bends farther away from the surface normal. Both cases are drawn below.

 incident  transmitted

 Light Travelling from Low Index to High

index, bends toward the normal.

 incident  transmitted

 Light Travelling from High Index to Low

index, bends away from the normal.

ni
nt

θi

θt

ni nt< ni nt>ni
nt

θi

θt

38.3.2 Critical Angle

As light travels from a material with high index of refraction to a material with low index of refraction,
it bends away from the surface normal. If the light is bent to an angle of 90◦ with the surface normal, it
cannot escape the material. It is said to undergo total internal reflection. The angle where this first occurs
is called the critical angle and depends on the index of refraction of the two materials.
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Total Internal Reflection : When light goes from a high index to a lower index
material, it is possible that the transmitted light will not leave the interface bound-
ary. The minimum incident angle for which this occurs is called the critical angle.
The critical angle is reached when θt = 90◦. This means Snell’s Law becomes
ni sin θc = nt and solving for the angle gives

θc = arcsin
nt

ni

The light will be totally internally reflected for θi ≥ θc.

ni nt

θc

ni nt>

θt = 90
o

Example 38.2 Critical Angle
Problem: A material has a critical angle of 47◦ when immersed in water nwater = 4/3. What is the speed
of light in this material?

Select One of the Following:

(a) 3 × 108 m
s (b) 2.1 × 108 m

s . (c-Answer) 1.6 × 108 m
s . (d) Cannot be determined from the

information given. (e) Toby

Solution

Let the index of refraction of the material we’re seeking be n1 and the water be n2. The critical angle is the
angle of incidence required to produce an angle of refraction of 90◦.

n1 sin θc = n2 sin 90◦,

with θc = 47◦ and n2 = 4/3. Solving for n1 gives

n1 =
4/3

sin 47◦
= 1.82

The speed of light in the material, c1, is then

c1 =
c

n1
=

3 × 108 m
s

1.82
= 1.6 × 108 m

s
.
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Example 38.3 Refraction at an Interface
Problem: In a certain material, light has a speed of 1.5 × 108 m

s and a wavelength of 320nm. The light is
originally in this material and impinges on the interface with another material in which the speed of light is
2.5 × 108 m

s .

(a)What is the index of refraction, n1, of the first material?

(b)What is the index of refraction, n2, of the second material?

(c)What is the wavelength of the light in air?

(d)What is the wavelength of the light in the second material?

(e)Is it possible for the light to undergo total internal reflection as it travels from the 1st to the
2nd material?

(f)If the angle of incidence is 55◦, does the light undergo total internal reflection?

(g)If the angle of incidence in the first material is 20◦, what is the angle of refraction in the second
material?

Solution to Part(a)

Let the first material in the problem be material 1 with light speed c1 = 1.5× 108 m
s and the second material

be material 2 with light speed c2 = 2.5 × 108 m
s . The index of refraction of material 1 is by definition,

n1 =
c

c1
=

3 × 108 m
s

1.5 × 108 m
s

= 2

Solution to Part(b)

The index of refraction of material 2 is by definition

n2 =
c

c2
=

3 × 108 m
s

2.5 × 108 m
s

= 1.2

Solution to Part(c)

The wavelength in a material is reduced by a factor of the index of refraction from the wavelength in a
vacuum. If λ is the wavelength in a vacuum, then λ1 = λ/n1. Solving for

λ = λ1n1 = (320nm)(2) = 640nm = 640 × 10−9m

Solution to Part(d)

The wavelength in a material is reduced by a factor of the index of refraction of the material, λ2 = λ/n2 =
533.3 × 10−9m.

Solution to Part(e)

Yes, since the first index of refraction is higher than the second, light travelling from a higher index of
refraction to a lower index can undergo total internal reflection.

Solution to Part(f)

Applying Snell’s Law with a transmitted angle of 90◦ gives

n1 sin θc = n2 sin 90◦

Solve for θc,

θc = sin−1

(

n2

n1

)

= 36.9◦

Since 55◦ > 36.9◦ the light will be totally internally reflected.
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Solution to Part(g)

Applying Snell’s Law, n1 sin θ1 = n2 sin θt, with θ1 = 20◦.

sin θt =
n1 sin θ1

n2
,

and thus the light is reflected at an angle of

θt = sin−1

(

n1 sin θ1

n2

)

= 34.75◦

38.4 Transmission and Reflection

38.4.1 Intensity of Transmission and Reflection

As a light ray strikes an interface, some of the light is reflected and some is transmitted. To express
how much light is reflected or transmitted, we need to be able to tell how much light we have. Light carries
energy from place to place, the more energy, the more light. The amount of light in a light ray is measured
by its intensity, the amount of energy crossing a unit area per unit time, or the power per unit area. Let’s
recall the definition of intensity.

Definition of Intensity: The intensity, I(t), of a wave is the energy, U(t), crossing
a unit area, A, per unit time. This is the same as power, P (t), per unit area,

I(t) =
U(t)

At
=

P (t)

A

The intensity of the reflected and transmitted light rays can be calculated from Maxwell’s equations. The
reflected intensity changes in a complicated manner with the angle of incidence. The reflected intensity also
depends on the direction of the electric component of the wave. The amount of light reflected is different if
the electric component lies in the plane formed by the direction of propagation and the surface normal or is
perpendicular to the plane.

 0.5

 1.0

 0.0
30  60  90

 Angle of Incidence (degrees)

 0.5

 1.0

 0.0
30  60  90

 Angle of Incidence (degrees)

 Electric Field Perpendicular to Plane of Incidence  Electric Field Parallel to Plane of Incidence

T

R

T

R
θp
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The are two special cases where the same result is obtained for any direction of the electric component
of the field, normal incidence where the angle of incidence is zero and grazing incidence where the angle
of incidence is 90◦. If the light ray strikes a surface at normal incidence, perpendicular to the surface, the
reflected intensity Ir has a simple relation to the indices of refraction of the two materials. Since energy
is conserved, the transmitted intensity, It, is the difference between the incident intensity and the reflected
intensity. We will only deal with normal incidence, because the expression becomes much more complicated
away from normal incidence.

Intensity of Reflected Light : In the special case that the incident light strikes the
interface at right angles (normal incidence), the intensity of the reflected light, Ir,
is a fraction of the intensity of the incident light, Ii.

Ir =

(

ni − nt

ni + nt

)2

Ii

Energy is Conserved: If there is no absorption, then the reflected intensity and the
transmitted intensity must add up to the total intensity.

Ii = Ir + It

Grazing Incidence: If the angle of incidence is 90◦, that is if the light just grazes
the surface, then all the light is reflected and no light is transmitted.

Example 38.4 Transmission through Plane Sandwich
Problem: Sunlight of intensity 1000 W

m2 is normally incident on a sheet of Lucite with nLucite = 1.5, which
is stacked on top of a sheet of plain old glass with nglass = 1.4. To the first order, which means we ignore
the light which undergoes multiple reflections, compute the intensity of the transmitted light.

Solution

Lucite Glass

I0 ItILucite Iglass

Definitions

nair = 1 ≡ Index of Refraction of Air

nLucite = 1.5 ≡ Index of Refraction of Lucite(TM)

nglass = 1.4 ≡ Index of Refraction of Glass

It ≡ Transmitted Intensity

I0 = 1000W/m2 ≡ Incident Intensity

ILucite ≡ Intensity in the Lucite

Iglass ≡ Intensity in the Glass

Strategy: Apply the formula for the reflected intensity of normally incident light at each interface.
(a) Compute Transmitted Intensity at Air-Lucite Interface: The reflected intensity at the first interface
is

Ireflected =

(

nair − nLucite

nair + nLucite

)2

I0

Ireflected =

(

1 − 1.5

1 + 1.5

)2

I0 = 0.04I0
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Since energy is conserved, the transmitted intensity at the Air-Lucite interface, ILucite, is

ILucite = I0 − Ireflected = 0.96I0

(b) Compute the Transmitted Intensity at the Lucite-Glass Interface: The reflected intensity at the
second interface is

Ireflected,glass =

(

nLucite − nglass

nLucite + nglass

)2

ILucite

Ireflected,glass =

(

1.5 − 1.4

1.4 + 1.5

)2

ILucite = 0.001ILucite

So the transmitted intensity through the Lucite-Glass interface,

Iglass = ILucite − Ireflected,glass = 0.999ILucite.

(c) Compute the Transmitted Intensity at the Glass-Air Interface: The reflected intensity at the third
interface is

Ireflected,air =

(

nglass − nair

nglass + nair

)2

Iglass

Ireflected,air =

(

1.4 − 1

1.4 + 1

)2

Iglass = 0.028Iglass

Therefore, the transmitted intensity is

It = Iglass − Ireflected,air = 0.972Iglass.

(d) Multiply It All Out: Combine the results of the three previous sections

It = (0.96)(0.999)(0.972)I0 = (0.932)(1000
W

m2
) = 932

W

m2

38.4.2 Polarization by Reflection - Brewster’s Law

If you examine the transmission and reflection curves for light where the electric field is the plane of
incidence above, there is an angle of incidence, θp, where all the light is transmitted and none is reflected.
All reflected light at this angle has its electric component perpendicular to the plane of incidence. The angle
occurs when the refracted and reflected light are 90◦ apart. This means that the reflected light is polarized
with a direction of polarization perpendicular to the plane of incidence.

Brewster’s Law: The polariza-
tion angle, θp, for light inci-
dent from a material with a cer-
tain index of refraction, ni, be-
ing reflected from another mate-
rial with index of refraction, nt,
is given by Brewster’s Law

θp = arctan

(

nt

ni

)

Light polarized by reflection has
its electric field perpendicular to
the plane of incidence.

ni

nt

θp
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Example 38.5 Brewster Angle for Water
Problem: At what angle to the normal must light be incident on a calm lake so that the reflected light is
polarized?

Solution

The light goes from ni = 1 to nt = 1.33, so the angle of polarization, θp, is given by Brewster’s law,

θp = arctan

(

nt

ni

)

= arctan

(

1.33

1

)

= 53◦

Example 38.6 Refraction from a Plane Surface
Problem: In a certain material, light has a speed of 1.5 × 108 m

s . When light from air is incident on this
interface (which is in the x-y plane) , the angle of transmission is 26◦.

(a)What is the refractive index of this material?

(b)What is the angle of incidence?

(c)What is Brewster’s angle for this situation?

(d)What is the angle of reflection?

(e)Is the reflected light fully polarized, mostly polarized, or very unpolarized? If fully or mostly
polarized, in what direction is the polarization?

 θ i  θ r

 θ t

 n=1

 mostly
 polarized

 1

 n

Material

Definitions

vn = 1.5 × 108 m

s
≡ Velocity of Light in Material

θi ≡ Incident Angle

θt ≡ Transmitted Angle

θr ≡ Reflected Angle

θp ≡ Brewster’s Angle

n ≡ Index of Refraction of Material

Strategy: Use Snell’s Law to compute the angle of refraction, and Brewster’s Law the angle of polarization.

Solution to Part (a)

Compute the Index of Refraction: The Index of Refraction is the ratio of the velocity of light in the
material to the velocity of light in vacuum

n =
c

vn
=

3 × 108 m
s

1.5 × 108 m
s

= 2

Solution to Part (b)
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Compute Angle of Incidence: Use Snell’s Law to relate the angle of incidence to the angle of refrac-
tion(transmission).

nair sin θi = n sin θt

Using nair = 1 and n = 2, gives
sin θi = 2 sin 26◦

Solving for θi and
θi = arcsin(2 sin 26◦) = 61◦

Solution to Part (c)

Compute Brewster’s Angle: Brewster’s Angle is given by tan θp = n
nair

= n, so

θp = arctan(n) = 63◦.

Solution to Part (d)

Compute Angle of Reflection: The Angle of Reflection equals the Angle of Incidence

θr = θi = 61◦

Solution to Part (e)

The reflected beam is close to Brewster’s Angle, so the reflected light is almost fully polarized. The direction
of polarization is perpendicular to the plane of incidence.
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Chapter 39

Geometric Optics

Light is an electromagnetic wave, but also a flux of photons. To learn more about the wave nature of light
take UPIII. To learn more about photons, take Modern Physics. We can understand the behavior of systems
composed of mirrors and lenses by modelling light as a ray. The study of light in situations where it behaves
as a ray is called geometric optics. Geometric optics is a good approximation as long as the wavelength of
light is small compared to the size of optical system. Visible light has a wavelength on the order of 500nm,
therefore systems composed of lenses and mirrors are well approximated by geometric optics. Chromatic
abberations, polarization, and interference effects cannot be explained by the geometric optics model. For
these, we need a model of light that recognizes its wave nature, that is to say, wave (physical) optics. For
some effects in nature, even the wave model is not adequate and we must take into account the corpuscular
nature of light and then we have a model called quantum optics.

39.1 Image Formation

39.1.1 What is an Image?

When light shines on an object, the light appears to scatter in all directions (diffuse reflection). This is
because if one looks closely enough at any surface, the surface appears rough. Light always bounces off so
that the angle of incidence equals the angle of reflection, measured with respect to the normal to the surface.
If the surface is REALLY smooth, the normal for all points on the surface is in the same direction and light
reflects in a single direction from the surface(specular reflection). The surface is shiny.

object

 light source

 diffuse

reflection

object

 light source specular 

reflection

 Diffuse Reflection from a

rough surface.

 Specular Reflection from a smooth surface

After bouncing off the object, the light will travel in straight lines called light rays. So if we place a screen
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somewhere in the path of these light rays without using some optical element to sort out the various rays,
each point on the screen will receive light rays from all points on the object and all that we’ll see is a general
impression of the color of the object.

 light source

 screen

 light all mixed up

no image forms

 object

If we place an optical system between the screen and the object—we can form an image on the screen, where
all light rays from the same point on the object strike the same point on the screen. When the screen is
placed where the light rays from a single point converge (where a sharp image is formed), we say that the
image is focused. The dashed lines drawn in the optical system do not represent the light rays. They allow
you to associate incoming and outgoing rays. The path through the optical system may be very complex.

 screen

 light source

 object

 optical system

 image formed

The image will be fuzzy if the screen is moved closer to or farther away from the optical system, since the
light rays do not meet at the same point on the screen. In this case, the image is said to be out of focus.
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 screen

 light source

 object

 optical system

 screen too close, image out of focus

Definition of Image: An image is a surface in space where all light rays coming
from the same point on an object intersect.

The light rays continue in a straight line after passing through the surface where the image forms. They
may eventually be detected by an optical detector like the human eye. The detector sees the rays originate
at the last point they all crossed, at the image. The detector only measures the direction the light rays are
travelling when they encounter the detector, their apparent direction. This direction may be very different
than the direction they were travelling when they left the object.

Apparent Direction: No
matter what (possibly
convoluted) path that
light may take from a
source to a detector, the
apparent source direc-
tion is the direction from
which the light enters the

detector. The line of
sight is along the appar-
ent source direction (the
dotted line in the figure
to the right).

source

light path

apparent source

detector

39.1.2 Describing Images

An optical system takes light reflected from an object and brings light rays from the same point on the
object to the same point on the image. Images are only interesting when something detects them. The most
common image detector is the human eye. We will use the following symbols to represent the object, the
location of the image, and the placement of the detector.
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Representing an Object: An object is represented by a
solid arrow as shown to the right.

 Object

Representing an Image: An image will be represented by
a hollow arrow as shown to the right.

 Image

Representing an Optical Detector: The human eye or
any optical detector does not see an object, it sees the
light rays coming from the object. We will draw an
optical detector as a cartoon of an eye as shown to the
right.

 Optical Detector

The image formed by an optical system is described by three features: whether it is bigger or smaller
than the object, whether it is right side up or upside down compared to the object, and whether it is formed
of physical light rays or the apparent direction of light rays. The first two of these features are captured in
a single number, the magnification, m. The magnification is positive if the image has the same orientation
as the object and negative if the image is upside down. The magnitude of the magnification is the ratio of
the image height to the object height. Therefore, if the image is twice as large as the object and right side
up, then the magnification is 2. If the image is one third the height of the object and upside down, then the
magnification is − 1

3 .

Magnification and Inversion : If the image is a different size than the object, then
it is magnified (reduced or enlarged, depending on the relative size). If the image
is oriented in the same direction as the object, then the image is upright. If the
image is oriented in the opposite direction, it is inverted. This classification can be
represented by a number, m, called the magnification of the image. The table below
consolidates the meanings of various values of Magnification for the black arrow as
the original object (images are in outline)

Object Image (m=1) m=0.5 m=-1.5m=-0.5

Not 

Magnified

Reduced

Upright

Reduced

Inverted Enlarged

Inverted

39.1.3 Real and Virtual Images

The last feature of an image is whether the image is real or virtual. A real image is formed at the location
where light rays from the object actually cross. If a screen were placed at the location of a real image, the
image would be projected on the screen. A virtual image is formed at the point the apparent direction of
light rays cross. Since no real light rays cross there, no image would be projected on a screen placed at the
location of a virtual image.
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Real Image Formation : Consider light that is reflected from a single point on an
object. The reflected light can take different paths to a detector. If the light paths
themselves intersect, then a real image is formed at that intersection point. An
example of real image formation is shown below for a concave mirror.

object

image

Virtual Image Formation : Consider light that is reflected from a single point on
an object. The light can take different paths to a detector. If the light paths do not
intersect, but the apparent source directions do, then a virtual image is formed. An
example of virtual image formation is shown below for a diverging lens. In this case
the light travels through the optical element and so the detector is to the right.

object image

39.2 Image Formation by Flat Surfaces

39.2.1 Image Formed by a Flat Mirror

Much of our experience with image formation is with flat surfaces: mirrors, windows, ponds. An image
is formed by both the refracted and the reflected ray. In either case, we have two tasks (1) Find where the
image is and (2) Describe the image as real or virtual, upright or inverted, and reduced or enlarged. Our
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tools are the definition of image, the law of reflection, and Snell’s law. Using the definition of an image we
can find the location of the image by:

Locating the Image: To locate the image, follow two light rays emerging from the
same point on the object. The rays will intersect or appear to intersect at the image.

So we need to select two light rays. The ray that leaves the base of the object and strikes the mirror with
normal incidence is the easiest to trace since it is reflected directly back on itself. Select a second ray that
leaves the base of the object making an angle θ to the first ray. This ray will strike the mirror with angle
of incidence θ and be reflected at an angle θ as drawn below. The rays leaving the mirror never intersect so
a real image is not formed. The apparent direction of the outgoing rays cross behind the mirror. A virtual
image is located at the point they cross. By similar triangles, the image is the same distance behind the
mirror that the object is in front of the mirror.

 mirror

 Apparent Direction

 mirror

 image

 normal

 Ray Reflected Directly Back  Ray Reflected at Equal Angles

θ

θ

θ θ

This analysis tells us nothing about the size and orientation of the image. To find this information, we
have to trace rays from two separate points on the object.

Describing the Image: To find the size and orientation of the image after the
location is found, trace one ray from the top of the object and one ray at the
bottom. These rays will pass through the top and the bottom of the image at the
image location.
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We have already traced two rays from the base of the object
through the system, so we know where the base of the image
is. Now, trace a ray from the top of the object. The easiest ray
is the ray that strikes the mirror at normal incidence. This ray
is drawn to the right. The apparent direction of this ray must
pass through the top of the image. I have drawn the image in.
The image is the upright and the same height as the object, so
the magnification is m = 1.

 mirror

 normal

 object  image

θ

θ

Image Formed by Flat Mirror: The image formed by a flat mirror is virtual, behind
the mirror, upright and the same size as the object (m = 1).

39.2.2 Image Formed by Refraction at a Flat Surface

Now let’s form an image by the refracted rays at a flat surface. The most common example of this is
the image you observe of a fish formed by the flat surface of the side of an aquarium. We can use the same
method to find the location and size of the fish image. First, trace two rays from the base of the object to find
the image location. The first ray traced is a ray that strikes the surface at normal incidence. This ray passes
through the surface without refraction. Next, trace a ray that intersects the surface at an angle θi. This ray
is refracted with transmitted angle that is related to incident angle by Snell’s law. Since the ray moves from
higher index to lower index, the ray bends away from the normal so θt > θi as drawn. The outgoing rays
never intersect, so no real image is formed. The apparent directions of the outgoing rays intersect at the
location of a virtual image as drawn. To find the size and orientation of the image, trace a ray from the top
of the object. The easiest ray to trace is the ray that meets the surface at normal incidence. This ray passes
through the surface without being refracted. Its apparent direction passes through the top of the image. I
have drawn the image. The image is upright and of the same orientation as the object, so m = 1. The image
appears nearer the surface than the object, which is why it is tricky to grab something underwater.

 surface

 image

 normal

 Locating the Image

 image

 water  air

 surface

 normal

 Describing the Image

 water  air

 object

nwater nair

θi

θi

θt

θi

θi

θt

nwater nair

c© 2007 John and Gay Stewart, The University of Arkansas 420



39.3. THICK SPHERICAL INTERFACES CHAPTER 39. GEOMETRIC OPTICS

To actually solve for the image location quantitatively, we would have the solve Snell’s law for θt, then
express θi in terms of the object location. This is bad enough from a flat interface, but becomes intensely
terrible for a curved interface. To simplify matters, we will make an assumption that is approximately true
for almost any optical system of interest.

Paraxial Rays: Paraxial rays, nearly parallel rays, are rays the meet the interfaces
of an optical system at sufficiently small angles that the small angle approximation
is valid: sin θ ≈ θ, tan θ ≈ θ, and cos θ ≈ 1. We will use this approximation from
now on when analyzing optical systems.

Since most of our optical systems are not drawn to scale, most of our drawings will not look like this is
a good hypothesis, but I have to get the drawing on a sheet of paper.
Assuming the rays passing through the system are paraxial,
Snell’s law simplifies to niθi = ntθt. I have redrawn the sys-
tem to the right with s as the distance the object is from the
surface, s′ the distance the image is from the surface, and h
the height the ray intersects the interface. Since the angles are
small, we can write tan θi = h/s ≈ θi and tan θt = h/s′ ≈ θt.
Substituting into Snell’s law gives,

niθi = ni
h

s
= ntθt = nt

h

s′

where ni = nwater and nt = nair. Solving for the image dis-
tance gives, s = (nair/nwater)s = 0.75s. So for water, the
fish is appears to be only 3

4 of the distance from the aquarium
surface as it actually is. This is what makes grabbing things
underwater dicey.

 surface

 normal

t

 Calculating the Image Location

 water  air

 object

 s

 s’

 h

nwater
nair

θi

θi

θt

θt

39.3 Thick Spherical Interfaces

39.3.1 Image Formation in a Curved Mirror

We can use the same methods to locate and describe the image of a curved mirror. First, we need to be
able to describe how the mirror is curved. We will work with mirrors that are sections of spherical surfaces.
To define the curvature of a spherical surface we simply need to know where the center of the sphere is. We
will call the point at the center of the sphere the center of curvature, and label the point C. An object, a
curved mirror, and the center of curvature is drawn below. The center of curvature is important because a
line drawn from the center of curvature to the mirror is the normal to the mirror’s surface, because a line
drawn from the center of a sphere to the surface of the sphere is a radius of the sphere and is perpendicular
to the surface of the sphere. We will let the line that intersects the base of the object and the center of the
mirror be the axis of the system. The point where the axis intersects the mirror is called the vertex of the
system.
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 mirror

 object

 C

 normal

 axis

To locate the image, we take two rays from the same point on the object and see where they go. We’ll use
two rays from the base of the object. The ray that strikes the mirror at normal incidence bounces directly
back on itself. A ray that leaves the object at an angle θo strikes the mirror at an angle of incidence of α.
It reflects from the mirror with an angle of reflection α. This reflected ray intersects the ray with normal
incidence at the image and makes an angle θi to the axis. The angle the normal makes with the axis, θc,
will also be important.

 mirror

 object

 C

 normal

 axis

α

 image

 Locate the Image

 h

 s

 s’

 r

 A

α

θi θoθc

∆s

Using a little geometry and a lot of small angle approximation, we can find the mathematical location of
the image. First, another approximation that will save us a lot of work. The distance ∆s, the distance the
curvature of the mirror moves the point the second ray intersects the surface from the vertex, will cause us
no end of annoyance. Assume this distance is small compared to s and s′.

Thin Lens/Mirror Approximation - Part I: The distance the lens’ or mirror’s surface
curves away from the vertex is small and can be ignored in all calculations.
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Symbols for Optical Systems: We will use the following symbol convention. The
distance the object is from the mirror or lens will be called the object distance and
denoted by the symbol s. The distance the image is from the mirror or lens will be
called the image distance and denoted by the symbol s′. The distance the center
of curvature is from the lens or mirror will be called the radius of curvature and
denoted by r.

Let point A be the point where the second ray strikes the mirror and h be the distance point A is from
the axis as drawn above. Using the small angle approximation we can write

tan θo =
h

s
≈ θo tan θi =

h

s′
≈ θi tan θc =

h

r
≈ θc

There must be 180◦ in a triangle. For the triangle (image-C-A), this means

θi + (180◦ − θc) + α = 180◦ → θi + α − θc = 0

and for the triangle (C-object-A)

θc + (180◦ − θo) + α = 180◦ → θc + α − θo = 0

Use these two equations to eliminate α,

θo + θi = 2θc ⇒ h

s
+

h

s′
= 2

h

r
⇒ 1

s
+

1

s′
=

2

r

Thin Mirror Equation: The location of the image of a slightly curved mirror is
found using the equation

1

s
+

1

s′
=

2

r

Since we have already traced the rays from the base of the object to the image, we can find the height and
orientation of the image by tracing a ray from its point. The ray that travels from the point the vertex has
incident angle β is reflected at equal angle β. The image is upside down, so the magnification is negative. The
ratio of the height of the image to the height of the object is given by similar triangles m = −hi/h0 = −s′/s.

 mirror

 object

 axis image

 Describe the Image

 ho

 s

 s’

hi

β

β

Magnification of a Thin Mirror: The magnification of a slightly curved mirror is
m = −s′/s where s′ is the image distance and s is the object distance.

The image formed was real because light from the object actually crossed at the image. Also the image
is enlarged, and inverted.
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39.3.2 Image Formation by Refraction at a Curved Surface

We can also use the light refracted from a curved surface to form an image. Most images formed by
refraction go through two curved surfaces; like through a magnifying glass. We want to consider a single
curved surface. Probably the most common example is the image formed by a the curved surface of the side
of a drinking glass. An object inside the glass will be magnified by the surface. The amount the surface
is curved will be defined by the center of curvature. Once again to find the location of the image we trace
two rays from the base of the object through the system. The ray down the axis of the system strikes the
surface at normal incidence and is not bent. A ray leaving the object at angle θo with strike the surface at
the point A making an angle of α to the surface normal. The ray is refracted at an angle β to the normal.
The angles α and β are related by Snell’s law.

 object

 C

 normal

 axis

α

 image

 Locate the Image

 h

 s

 s’

 r

 A

 surface
 water  air

β

 apparent

 direction

 h

θi θo θc

∆s

ni nt

This time we will use the fact that the sum on the angles in a straight line is 180◦. Using the line formed
by the normal, we can write

α + (90◦ − θo) + (90◦ − θc) = 180◦ ⇒ α = θo + θc

and using the line formed by the outgoing ray and the apparent direction

β + (90◦ − θc) + (90◦ − θi) = 180◦ ⇒ β = θi + θc

Snell’s law in the small angle approximation is niα = ntβ and substituting yields,

ni(θo + θc) = nt(θi + θc) ⇒ niθ0 − ntθi = (nt − ni)θc

Substituting the angles expressed in terms of the image and object distances gives

ni
h

s
− nt

h

s′
= (nt − ni)

h

r

and eliminating h,
ni

s
− nt

s′
=

nt − ni

r

We will adopt a sign convention next section and in that convention s′ will be negative for this situation, so
the formula for a single interface will be

ni

s
+

nt

s′
=

nt − ni

r
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We can find the magnification by tracing the ray from the point of the object through the vertex. If the
incident angle is α and the transmitted angle is β, then the two angles are related by Snell’s law, niα = ntβ.
The object height is ho = αs and the image height hi = βs′. The image is upright so the magnification is
positive. The magnification is

m =
hi

ho
=

βs′

αs
=

nis
′

nts

where I used β = (ni/nt)α from Snell’s law. Once again if we use a sign convention where s′ is negative for

this situation this will become m = −nis
′

nts
.

 object

 axisα

 image

 Describe the Image

 ho

 s

 s’

 A

 surface

 water

 air

β

 apparent
 direction

hi

ni

nt

The image is virtual because it is formed of the apparent direction of the outgoing rays. The image is
upright and enlarged.

39.3.3 Forming Images by Refraction

In the previous section, we found the equation locating the image formed by refraction at a curved surface
for a specific choice of curvature and object location. By adopting a sign convention for when curvatures
and distances are positive and negative, this can be turned into an equation that locates the image for a
single interface for any curved surface.

Sign Convention for Optics: The positive direction of the optical axis is in the
direction that light rays leave the optical element. The object distance to the first
interface is always positive.
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Single Interface Equation (Thick Lens Equation): Consider now a spherical re-
fractive interface with a certain radius of curvature, r. If an object is in a material
of a certain index of refraction, ni, the light will impinge upon the interface to
another material, nt, and an image will be formed. The distance of the object from
the vertex of the interface, s, is related to the distance of the image, s′, from the
same via the interface equation

ni

s
+

nt

s
=

nt − ni

r

Lateral Magnification of an Image for a Single, Refractive Interface : The image
formed as above will have a lateral magnification, m, given by

m = −nis
′

nts

We worked out the location of the image for a flat surface earlier. Our new universal equation should
give the same answer back.

Example 39.1 Frog Observing Bug
Problem: A sticky-tongued frog is 4.0cm below the surface of a still pond. It is looking directly overhead
at its next meal: an insect hovering in the air 3.0cm above the surface of the water. The refractive index
of water is 4/3. This problem requires you to use the thick lens equations for both the image location and
magnification. The pond has a radius of curvature of infinity, because it is flat.

(a)How high is the insect above the surface from the frog’s viewpoint?

(b)Does the frog see the insect magnified, reduced, or the same size as if both were in air?

Solution to Part(a)

The frog is looking at the insect, so the light is going from the insect to the frog. Thus, ni = 1 and nt = 4/3.
The radius of curvature of the surface is infinity, since you have to have an infinitely big sphere for part of
its surface to appear flat. The single-interface equation is

ni

s
+

nt

s′
=

nt − ni

r

and reduces to
1

3cm
+

4/3

s′
= 0,

since 1/∞ = 0. Solving the equation yields the image distance as s′ = −4cm, so the insect appears to be
4cm above the surface of the water (incident side).

Solution to Part(b)

m = −nis
′

nts
= +1,

which will always be the case for a flat surface.

Example 39.2 Fish Viewed from Scuba Mask
Problem: A scuba diver wears a diving mask that bulges outward with a radius of curvature of 0.5m. There
is thus a spherical surface between the water (n = 1.33) and the air in the mask. Neglect the glass forming
the mask. The diver looks at a fish, a distance 1.25m from the mask.
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(a)Compute the location of where the fish appears to be.

(b)What is the magnification of the fish?

(c)Draw a diagram showing the system, label positive on the optical axis as well as the location of
the fish and its image.

Solution to Part(a)

Light travels from the fish to the observer’s eye; therefore, the optical axis is as drawn. The index of refraction
of the incident material, water, is ni = 1.33 = 4/3. The index of refraction of the transmitted material, air,
is nt = 1. The mask bulges outward as drawn giving a positive radius of curvature once the sign convention
is applied r = +0.5m. The object, the fish, is located at s = 1.25m. The image distance is found using the
Single Interface Equation:

ni

s
+

nt

s′
=

nt − ni

r
.

Substitute.
4/3

1.25m
+

1

s′
=

1 − 4/3

0.5m

Solving yields an image distance of
s′ = −0.577m.

Solution to Part(b)

For a single curved interface, the magnification is given by

m = −nis
′

nts
= − (4/3)(−0.577m)

(1)(1.25m)
= 0.615.

Solution to Part(c)

The diagram is drawn to the right. The
point C is the center of curvature of the
surface.

 0

 Air

Water

 s

 fish

 r

 C

 s'

image

If we have multiple curved surfaces, the first surface light reaches forms an image, called an intermediate

image. This image becomes the object for the second surface. The total magnification of a multiple interface
system is just the product of the magnifications of each surface.

Magnification of Multiple Elements: The magnification, m, of an optical system
containing multiple elements is found by multiplying the magnification of each in-
dividual element.

m = m1m2...mN
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Example 39.3 Two Spherical Interfaces on Either End of Refractive Material
Problem: A rod of glass, ng = 3/2, is immersed in water, nw = 4/3, and an object is 48cm in front of
the first interface (a). Each end of the rod has a convex spherical interface, the radii of curvature being
ra = 24cm and rb = −12cm, where the negative sign for, rb, is from the sign convention. The rod is 2.0m
long. Locate the image formed by this rod.

Solution

optical coordinate axis (a)

D

optical coordinate axis (b)

 intermediate image

 object

 0

 0

 final image

 glass

 water

 a  b

sb

sa

’sb

’sa rb

ra

nw ng

Definitions

ra = 24cm ≡ Radius of curvature for interface a

rb = −12cm ≡ Radius of curvature for interface b

nw = 4/3 ≡ Index of refraction for the outside material

ng = 3/2 ≡ Index of refraction for the inside material

sa = 48cm ≡ Distance of object from interface a

s′b ≡ Distance of image from interface b

s′a ≡ Distance of intermediate image from interface a

sb ≡ Distance of intermediate object from interface b

d = 2.0m ≡ Separation between the optical interfaces

(a) Draw the Optical System: Drawn the real optical axis and place the optical elements on the axis.
Draw an optical coordinate axis for each interface.
(b) Compute the Image Distance as Formed by Interface a: Use Interface equation for the first interface

ni

s
+

nt

s′
=

nt − ni

r
−→ nw

sa
+

ng

s′a
=

ng − nw

ra
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and solve for the intermediate image distance s′a. From the diagram the radius of the first interface (a) is
positive. Solve the interface equation for s′a

s′a = ng

(

ng − nw

ra
− nw

s′a

)−1

=
3

2

(

3/2 − 4/3

24cm
− 4/3

48cm

)−1

= −72cm

The intermediate image forms farther from the first interface than the object, as drawn.
(c) Calculate the Magnification of Interface (a): The magnification for a single interface is

m = −nis
′

nts

where ni is the index of refraction where the light originates and nt is the index of refraction where light is
transmitted.

ma = −nws′a
ngsa

= −
4
3 (−72cm)
3
2 (48cm)

= 1.33

(d) Calculate the Object Distance for Interface (b): The object for the second interface is the image
formed by the first interface. The distance between the optical interfaces must be accounted for, which
means

sb = d − s′a

The image from the first interface is a virtual image.

sb = d − s′a = 200cm − (−72)cm = 272cm

(e) Calculate the Image Distance as Formed by Interface (b): Use Interface equation for the second
interface

ni

s
+

nt

s′
=

nt − ni

r
−→ ng

sb
+

nw

s′b
=

nw − ng

rb

and solve for the intermediate image distance s′b. Note from its placement on the optical coordinate axis,
rb < 0.
Special Note: Since the light comes through ng first, that is the index that is associated with the object
distance for the second interface. Solve the interface equation for s′b

s′ = nw

(

nw − ng

rb
− ng

sb

)−1

=
4

3

(

4/3 − 3/2

−12cm
− 3/2

272cm

)−1

= 159cm = 1.6m

(f) Calculate the Magnification of Interface (b): The magnification for a single interface is

m = −nis
′

nts

where ni is the index of refraction where the light originates, this time the glass, and nt is the index of
refraction where light is transmitted, this time the water.

ma = − ngs
′
b

nwsb
= −

3
2 (160cm)
4
3 (272cm)

= −0.66

(g) Calculate the Total Magnification: The total magnification is the product the magnifications of the
individual elements,

mT = m1m2 = (1.33)(−0.66) = −0.88

The final image is inverted (mT < 0), reduced (|mT | < 1), and real s′b > 0.
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39.3.4 A Thin Lens

A thin lens is formed of two spherical surfaces of radius r1 and r2. The surfaces are spaced a distance
d apart as shown below. Outside the lens the index of refraction is n0 and inside the lens the index of
refraction is n. The object is at s. The first surface light reaches, surface 1, forms and image at location s′1.
This image becomes the object for the second surface which forms an image at s′. The object distance for
the second surface is s2 = d − s′1. The problem of the thin lens is exactly like the previous example except
we will eventually assume the distance between the two surfaces, d, is small.

 d

 surface 1  surface 2

 surface 1 axis

 s  0

 image surface 2

 object

 image surface 1

 0  s’

n

 surface 2 axis

C1

 lens

C2

n0 n0

s2

s1’ r1

r2

The single interface equation for the first surface is

n0

s
+

n

s′1
=

n − n0

r1

and for the second surface using s2 = d − s′1,

n

d − s′1
+

n0

s′
=

n0 − n

r2

If we assume d is very small compared to s′1, the second equation becomes

− n

s′1
+

n0

s′
=

n0 − n

r2

If we add the two equations, the terms containing the intermediate image distance cancel out and we get

n0

s
+

n0

s′
=

n − n0

r1
+

n0 − n

r2
= (n − n0)

(

1

r1
− 1

r2

)

The total magnification of the lens is the product of the magnifications of the individual surfaces,

m = m1m2 =

(

− n0s
′
1

ns

)(

− ns′

n0(d − s′1)

)

= −s′

s

if d is small.
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Image Location of a Thin Lens: The image formed by a thin lens is located by

1

s
+

1

s′
=

(n − n0)

n0

(

1

r1
− 1

r2

)

where n is the index of refraction of the lens and n0 is the index of the material
outside of the lens. The magnification of the thin lens is m = −s′/s.

Thin Lens Approximation Part II: A thin lens is a lens where the distance between
the curved surfaces is small compared to the intermediate image distance of the
first surface.
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Chapter 40

Thin Lenses and Mirrors

40.1 Image Formation Using Mirrors

40.1.1 Types of Mirrors

We will work with spherical mirrors, mirrors whose surfaces are sections of a thin reflecting spherical
shell. The mirrors are classified by whether the reflecting surface bends outward or inward. There are three
types of spherical mirrors. The mnemonic we will use to remember which is which is “concave caves in”.

Types of Mirrors:

 Convex Mirror

incident

light

 Concave Mirror

incident

light

incident

light

 Plane Mirror

A plane mirror is a section of an infinitely large sphere.

40.1.2 Focal Point and Focal Length of a Mirror

Light rays originating from a point light source spread out radially as they travel. Far away from any
light source, the light rays become nearly parallel.
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 Light spreads out from 

a point object.
 Very Far Away

Light Nearly Parallel

Therefore, light rays from the sun are very, very nearly parallel. We can also make parallel light rays
using an appropriately constructed optical system. Parallel light rays are very useful. If we shine parallel
light rays on a curved mirror, the light rays, or the direction the light rays appear to come from, will converge
at a point. This point is called the focal point.

Definition of Focal Point: The point where incoming parallel light rays cross or
the apparent direction where incoming parallel light rays appear to cross. Note this
is the secondary focal point for a lens, the primary focal point is the point where a
point light source could be placed to generate parallel rays.

For the concave mirror system below, the parallel light rays all reflect to a point. For the convex mirror
system, the reflected light rays appear to originate from a point behind the mirror. The direction the rays
appear to come from is the apparent direction. The apparent direction is shown as dashed lines on the
diagram. The point where the light or the light’s apparent direction converges is called the focal point of the
optical system, and is labelled F .

 F

convex mirror

 apparent

direction

 F

 concave

mirror

Focal Length of a Spherical Mirror: The focal length, f , of a spherical mirror is
distance from the point the optical axis intersects the mirror to the focal point of
the mirror.

Last chapter, we found the image location, s′, for a spherical mirror was related to the object location,
s, by

1

s
+

1

s′
=

2

r
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where r is the radius of curvature. To find the focal length, we need to find where parallel rays are focused.
To produce parallel rays, use an object that is infinity far from the mirror. The image of this object will be
at the focal point, so s = ∞ and s′ = f .

1

∞ +
1

f
=

2

r

so the focal length of a mirror is f = r/2.

Mirror Maker’s Equation: The focal length, f , of a spherical mirror is half the
radius of curvature, r, of the mirror,

f =
r

2
.

40.1.3 Landmarks of Spherical Mirrors

A light ray that strikes a mirror perpendicular to the surface is reflected directly back along itself: since
the angle of incidence is zero, the angle of reflection is zero. The path of this light ray is called the optical
axis of the system. To help organize our calculations, we will also draw a copy of this axis below the diagram
of the system. This will be the coordinate axis for our calculations. The point where the optical axis crosses
the mirror or the center of the lens will be the origin of the coordinate system. We will call this point the
vertex of the mirror. This is indicated by drawing the point “0” on the coordinate axis below the drawing.
To be useful in mathematical calculations, the positive and negative directions of a coordinate system must
defined. For optical systems, the positive direction of the coordinate axis is chosen using the following
convention:

Sign Convention for Optics: The positive direction of the optical axis is in the
direction that light rays leave the optical element. The object distance to the first
interface is always positive.

For mirrors, if the incident light comes in from the left, it reflects off the mirror and leaves to the left. For
lenses the light passes through the element, so if incident light is from the left, the light leaves the system
to the right.

The Optical Axis: The optical axis of an optical system is a line that passes through
each optical element perpendicular to the surface of the element. We will also use
an optical coordinate axis drawn below the optical system to show the locations of
the variables in our optical calculations.

 0

Convex Mirror

 optical coordinate axis(positive)  optical coordinate axis(negative)

 incident light

 Real Optical Axis

 reflected light
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Thin Lenses and Mirrors: The mirrors and lenses we analyze are called thin lenses
and mirrors. This means the thickness or the lens or radius of curvature of the
mirror is such that the light rays appear to refract or reflect off a plane through
the center of the lens or mirror. An exaggerated cartoon of the lens or mirror will
usually be drawn, but along with it will be a plane that defines the mathematical
location of the thin lens or mirror.

The optical coordinate axis clearly shows the direction, which the sign convention gives as positive, and
the location of important distances in the optical system: radii of curvature, focal lengths, the object, and
image distances. The origin of the optical axis is the location where the optical axis intersects the mirror.
Both the real optical axis and the optical coordinate axis will be referred to as the optical axis.

The behavior of a spherical mirror as an optical element is determined by two points that lie on the
real optical axis, the center of curvature, C, and the focal point, F . With these points are associated two
distances along the optical coordinate axis, the radius of curvature, r, and the focal length f . Both these
distances have signs given by our sign convention. They are positive if they are on the positive side of the
optical coordinate axis (from zero) and negative if they are on the negative side.

Center of Curvature: A spherical mirror is a mirror that is some section of a
reflecting spherical shell. The center of curvature is a point at the center of the
shell. It is given the label C.

Radius of Curvature: The radius of curvature, r, is the distance from the center
of curvature to the point the optical axis crosses the mirror. It is the radius of the
sphere of which the mirror is a section. The radius of curvature has sign given by
the sign convention for optics.

Focal Point for a Mirror: The focal point is a point on the real optical axis where
incident parallel light rays are focused (concave mirror) or appear to be focused
(convex mirror). The focal point is given the label F .

A couple of examples to illustrate these definitions: first a convex mirror, then a concave mirror. In both
cases, we have to illustrate the direction of the incident light. We will save plane mirrors until we can
mathematically locate images, because both the focal point and the center of curvature of a plane mirror
are at infinity.

Example 40.1 Landmarks of a Convex Mirror
Problem: A convex mirror is formed from a section of a sphere of radius 20cm.

(a)Draw the mirror, the optical axis, the location of the focal point, and the location of the center
of curvature.

(b)Draw the optical coordinate axis, clearly labelling positive and negative on the axis. Then mark
the radius of curvature, r, and the focal point f on the optical axis.

(c)Compute the signed value of the focal length and the radius of curvature.

Solution to Part (a)

Draw the optical axis through the center of the mirror and a representation of the lens that bends in the
correct direction. The curvature of a convex mirror is as shown below. The center of curvature, C, for this
mirror is as drawn. For all mirrors, the focal point, F , is halfway between the center of curvature and the
mirror as drawn.
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 C F

Convex Mirror
 F - Focal Point
C - Center of Curvature

 0  r f

 optical coordinate axis(positive)  optical coordinate axis(negative)

(-10 cm)

 incident light

 optical axis

Solution to Part (b)

Draw the Optical Coordinate Axis and Locate Landmarks: The optical coordinate axis is drawn below the
mirror in the figure above. The sign convention tells us that positive on the optical axis is on the reflected
side of the mirror. Since light bounces off of a mirror, the reflected side is the same as the incident side, so
positive and negative on the optical axis are as drawn. The points f and r, the focal length and radius of
curvature, are located directly below the focal point and center of curvature.

Solution to Part (c)

Compute Focal Length and Radius of Curvature: Since the focal point and center of curvature are on the
negative part of the optical axis, the signed radius of curvature is r = −20cm and the signed focal length is
f = r/2 = −10cm.

Example 40.2 Landmarks for Concave Mirror
Problem: A concave mirror has focal length of magnitude |f | = 30cm.

(a)Draw the mirror, the optical axis, the location of the focal point, and location of the center of
curvature.

(b)Draw the optical coordinate axis, clearly labelling positive and negative on the axis, then mark
the radius of curvature, r, and the focal point f on the optical axis.

(c)Compute the signed value of the focal length and the radius of curvature.

Solution to Part (a)

Locate the Center of Curvature and the Focal Point: Draw the real optical axis through the center of
the mirror. Draw a cartoon (numerical value of radius not maintained) of the mirror that curves in the right
direction. The curvature of a concave mirror is as shown below. The center of curvature, C, for this mirror
is as drawn, and for all mirrors, the focal point, F , is halfway between the center of curvature and the mirror
as drawn.
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C  F

Concave Mirror

 incident light

0f r

 optical coordinate axis(positive)  optical axis

(negative)

Solution to Part (b)

Draw the Coordinate Optical Axis and Locate Landmarks: The optical coordinate axis is drawn below
the mirror. The sign convention tells us that positive on the optical axis is on the reflected side of the mirror
as drawn. The points f and r, the focal length and radius of curvature, are located directly below the focal
point and center of curvature.

Solution to Part (c)

Compute the Focal Length: Since they are on the positive part of the optical axis, both are positive for this
mirror. Therefore, the signed radius of curvature is r = 60cm and the signed focal length is f = r/2 = 30cm

40.1.4 Ray Tracing for Spherical Mirrors

The game in optics is to figure out the location and properties of the image formed by shining light on
an object a certain distance from an optical system. For an image to form, all light leaving the object from
each point must be brought to the same point on the image. In this chapter, we assume that light travels in
straight lines. Therefore, we can find the image by taking each light ray leaving a point on the object and
following it through the optical system. The location where the various light rays leaving an object intersect
is the location of the image. This method of locating the image is called ray tracing and is one of the more
beautiful applications of graphical technique in science. The problem is that for most rays leaving an object,
following the ray through an optical system is difficult. The strategy is then to find a few of the rays which
we can trace easily and that is why the focal point and the radius of curvature are so important.

No matter what the shape of the surface, the angle of incidence equals the angle of reflection. The focal
point of a mirror is chosen so that any parallel ray will have equal angles of incidence and reflection when
the reflected ray passes through the focal point. The tail of the object arrow is placed on the optical axis. A
ray travelling along the optical axis is reflected directly back along the optical axis, so the tail of the image
arrow will also sit on the optical axis.

The location of the object is represented by the symbol s on the optical coordinate axis. The location of
the image is represented by the symbol s′ on the optical coordinate axis.

To draw the ray diagram do the following:

• Draw the mirror with correct direction of curvature.

• Draw and label the focal point (F) and the center of curvature (C).
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• Indicate the positive direction on the optical axis.

• Draw the location of the points s, f , and r on the optical axis. Indicate using > 0 and < 0 whether
these quantities are positive or negative.

• Draw the Parallel Ray and label it (P ). The parallel ray leaves the object parallel to the axis and is
reflected through the focal point. Remember to draw the apparent direction as a dashed line.

• Draw the Focal Ray and label it (FF ). The focal ray travels from the object through the focal point
and is reflected parallel to the axis, if the object is outside of the focal point. If the object is inside the
focal point, the ray is on the line from the focal point and to the object, then is reflected parallel.

• Draw the Central Ray and label it (CC). The central ray reflects off of the center of the mirror with
the incident angle equal to the reflected angle.

• Draw the Radial Ray and label it (R). The radial ray lies on the line from the center of curvature to
the object. The ray is reflected directly back along the line.

We will illustrate ray tracing in the examples of the next section. If you have any questions about how
to draw a particular ray, next chapter is an exhaustive reference on ray tracing with additional examples.

40.1.5 Mathematically Locating the Image for a Spherical Mirror System

The ray tracing techniques above allow us to approximately locate and describe the image of a spherical
mirror if we can locate the focal point of the mirror. To calculate the image location for either a mirror or
a lenses, the strategy is the same. Beg, borrow, steal, or calculate the focal points of the optical elements in
your system, then apply the equation for the type of element you are working with to get the image distance.
We can also exactly locate and describe the image mathematically. The location of the image is given by:

Mirror Equation: The distance of the image, s′, from the vertex of the mirror (0
on the optical axis) can be found from the mirror equation

1

s
+

1

s′
=

1

f

where s is the object distance and f the focal length. The object distance is always
positive if you are looking at a real thing, but the focal length and the image distance
conform to the sign convention.

To describe an image we need to tell whether it is upright or inverted, enlarged or reduced, and real or
virtual. We can calculate each of these properties from the object and image distance through the numerical
expression for the magnification m:

Lateral Magnification Due to a Spherical Mirror : An image formed by reflection
from a spherical mirror will have a lateral magnification,m, given by

m = −s′

s

The − sign comes from the fact that a real image (s′ > 0) is inverted (m < 0).

The following two examples illustrate using the mirror equation and the mathematical expression for
magnification of a convex or concave mirror.

Example 40.3 Compute the Image of a Concave Mirror
Problem: A concave mirror has a radius of curvature of 45cm. An object is 1.0m from the vertex. Compute
the image distance, interpret the image, and draw a ray diagram.

Solution
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P

R FF

CC

C   F

0 f  r s’s

 P - Parallel Ray
 CC - Central Ray
 FF - Focal Ray
 R - Radial Ray

 C - Center of Curvature
F - Focal Point

Definitions

s = 1m ≡ Object Distance

r = 45cm ≡ Radius of Curvature

s′ ≡ Image Distance

m ≡ Magnification

(a) Compute the Focal Length: The radius of curvature is given as r = 45cm, therefore the focal length is
f = r/2 = 22.5cm. For a concave mirror, the focal length is on the transmitted side and is therefore positive.
(b) Compute the Image Distance: Use the mirror equation to find the image distance. The information
given is object distance,

1

s
+

1

s′
=

1

f
−→ s′ =

(

1

f
− 1

s

)−1

=

(

1

0.225m
− 1

1.0m

)−1

s’ = 0.29m = 29cm
(c) Compute the Magnification: Use m = −s′/s

m = −0.29m

1.0m
= −0.29

(d) Mathematically Interpret the Image: This is a real, s > 0, reduced |m < 1|, inverted m < 0 image.
(e) Draw Ray Diagram: Draw the mirror with the approximate radius of curvature, and the real optical
axis through the vertex. At the intersection of the vertex and the mirror, draw the plane from which the
rays will be reflected. Draw all principle rays.

• Parallel Ray (P) - Drawn parallel to the axis and bounces back through the focal point.

• Focal Ray (FF) - Drawn through focal point, bounces back parallel to the axis.

• Central Ray (CC) - Drawn to the vertex, bounces back with equal angle of reflection.

• Radial Ray (R) - Drawn through center of curvature, bounces directly back.
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Where they intersect is the image, and should approximately agree with the calculated image distance
and magnification. If we do not draw the diagram to scale, tracing rays will not reproduce the answer. The
more accurate the scale of the drawing, the better the agreement should be. Draw the optical coordinate
axis below the figure.

Example 40.4 Convex Mirror Image Formation
Problem: A convex mirror has radius of curvature of magnitude 8cm. An object is placed a distance 6cm
from the mirror.

(a)Compute the image distance.

(b)Compute the magnification of the image.

(c)Describe the image.

(d)Draw the ray diagram.

 C F

 Focal Ray
Parallel Ray
Central Ray

Apparent Direction

Radial Ray

 s  0  r f s'

Convex Mirror

Definitions

r = −8cm ≡ Radius of Curvature

f ≡ Focal Length of Mirror

s = 6cm ≡ Object Distance

s′ ≡ Image Distance

m ≡ Magnification

C ≡ Center of Curvature

F ≡ Focal Point

Strategy: Compute the image location, then draw the ray diagram. Use image location to compute the
magnification.

Solution to Part (a)

(a) Compute the Focal Length: The focal length is half the radius of curvature |f | = r/2 = 4cm. For a
convex mirror, the focal point is behind the mirror, so f = −4cm < 0.
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(b) Compute the Image Location: The image location is given by the mirror equation

1

s
+

1

s′
=

1

f

or solving for s′

s′ =
1

1
f − 1

s

=
1

1
−4cm − 1

6cm

s′ = −12

5
cm = −2.4cm

Solution to Part (b)

Compute the Magnification: By definition, the magnification of the image is,

m = −s′

s
= − (− 12

5 cm)

(6cm)
=

2

5
= 0.4

Solution to Part (c)

Describe the Image: The image is reduced, since |m| < 1, upright m > 0, and virtual s′ < 0. All of
this can be read from the ray diagram, the drawn image is smaller, the same orientation as the object, and
formed by the apparent direction of the rays.

Solution to Part (d)

Draw the Ray Diagram: Draw the mirror with correct direction of curvature and the plane through
the vertex from which we will draw the reflected rays. Draw the focal ray, central ray, parallel ray, and
radial ray for the mirror. This should converge to an image at approximately the image distance. This will
approximately happen if the object, focal point, and center of curvature are drawn to scale. The radial ray
is drawn from the object through the center of curvature C. The central ray is drawn, reflected at the point
the mirror meets the axis. The parallel ray is drawn parallel to the axis on the object side of the mirror,
then appears to bend toward the focal point. The reflection of this ray is in the same direction as the line
through the focal point. The focal ray is drawn from the object towards the focal point. The reflection of
this ray is parallel to the axis.

40.2 Image Formation by Thin Lenses

40.2.1 Working with Thin Lenses

Image formation by lenses works about the same way as image formation using mirrors; we can approx-
imately locate the image using similar ray tracing methods. We will work with thin lenses, which are lenses
where the thickness of the lens is much smaller than the object distance. The key feature of a lens is the
same as the key feature of a mirror, the focal length. The first thing we have to learn is how to locate the
focal point. For lenses there are two cases; (I) The point where a point source can be placed to generate
outgoing parallel rays, the primary focal point, (II) The point where incoming parallel rays are focused, the
secondary focal point.

Not A New Sign Convention: For lenses we will use a sign convention that the
image distance and the radius of curvature are positive if they are on the transmitted
side of the lens. Unlike mirrors the transmitted side is not the same side as the
incident side. Object distance is positive on the incident side of the lens.

Two Radii of Curvature: A thin lens has two centers of curvature, C1 and C2, one
for each side of the lens. The center of curvature C1 is for the surface the incident
light reaches first. The center of curvature C2 is the surface the light reaches second.
The radii of curvature r1 and r2 are found by measuring the location of the centers
of curvature along the optical axis. The radii of curvature conform to the sign
convention.
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To locate the image, s′, of a thin lens given the location of the object s, we found the equation

1

s
+

1

s′
=

n − n0

n0

(

1

r1
− 1

r2

)

If the index of refraction of the lens is n and the lens is placed in air, this becomes

1

s
+

1

s′
= (n − 1)

(

1

r1
− 1

r2

)

To find the focal length, find the location where parallel light rays are focused, this will be the place an
object at infinity is focused, so if s = ∞ then s′ = f . In air,

1

∞ +
1

f
= (n − 1)

(

1

r1
− 1

r2

)

=
1

f

Lens-maker’s Equation : For a converging (convex) lens, all light which comes in
parallel to the axis will be focused through the secondary focal point, F ′. For a
diverging (concave) lens, the apparent direction of all light that comes in parallel
to the axis will pass through the secondary focal point. This leads to a relationship
that will describe the focal length of a lens—the lens-maker’s equation:

1

f
= (n − 1)

(

1

r1
− 1

r2

)

This yields a focal length with appropriate sign to locate the secondary focal point.

Focal Length Same for Both Sides: The focal length is the same for a thin lens
for either orientation of the lens with reference to the direction of incident light.

Converging and Diverging Lenses: A converging lens causes light rays from infinity
to be focused at the secondary focal point on the transmitted side of the lens by
causing the rays to bend closer together (to converge). A diverging lens causes the
apparent direction of light rays from infinity to focus at the secondary focal point
on the incident side of the lens. The focal length of a diverging lens is negative
and the focal length of a converging lens is positive.

Secondary Focal Point (F’): The focal point where the incident parallel light is
focused (converging lens) or the apparent direction is focused (diverging lens), is
the secondary focal point and is designated as F ′ on the ray diagram. The other
focal point is the primary focal point and is designated F on the ray diagram.

 Converging Lens

F F’

f

 Diverging Lens

FF’

f 0  0

 incident

 light
 incident
 light
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Primary Focal Point (F): The primary focal point is the point where a point light
source could be placed to produce outgoing parallel rays (converging lens) or where
light rays should be sent toward to produce outgoing parallel rays (diverging lens).

 Converging Lens

F

-f

 Diverging Lens

F

-f 0  0

 incident

 light

 incident

 light

Types of Lenses: The figure below shows the types of lenses which can be formed
of sections of spherical surfaces. The radius of curvature and focal length of a plane
is infinity, therefore the contribution to the focal length in the lens maker’s equation
is 1/r = 1/∞ = 0. If one plays with the lensmaker’s equation, one will find for
lenses in air that a convex lens always has a positive focal length and is therefore a
converging lens and a concave lens always has negative focal length and is therefore
a diverging lens.

 Concave Lens Convex Lens Plano-Convex Lens

Example 40.5 Focal Lengths of Unusual Lenses

c© 2007 John and Gay Stewart, The University of Arkansas 443



40.2. IMAGE FORMATION BY THIN LENSES CHAPTER 40. THIN LENSES AND MIRRORS

Problem: Not all lenses are simple convex or concave lenses.
This problem asks you to compute the focal lengths of a cou-
ple of more interesting lenses ground out of glass with index of
refraction 1.66. The lens in figure (a) is a plano-convex lens,
where the convex surface has a radius of curvature of magni-
tude, |r| = 20cm. The lens in figure (b) is a combination of a
convex and concave lens, where the convex surface has radius
with magnitude |r| = 20cm and the concave surface has radii
of curvature |r| = 10cm.

(a)For lens (a), compute the focal length and tell
whether the lens is converging or diverging. Also,
draw the lens and its optical axis showing the lo-
cation of each center of curvature and the primary
and secondary focal points.

(b)For lens (b), compute the focal length and tell
whether the lens is converging or diverging. Also,
draw the lens and its optical axis showing the lo-
cation of each center of curvature and the primary
and secondary focal points.

 figure (a) figure (b)

Solution for Lens (a)

The radii of curvature for the lens (with appropriate signs) are r1 = 20cm and r2 = ∞. Apply the lens
maker’s equation,

1

f
= (n − 1)

(

1

r1
− 1

r2

)

= (1.66 − 1)

(

1

20cm
− 1

∞

)

.

1

f
=

0.66

20cm

f = 30cm

Since the focal length is positive, the secondary focal point, F ′, is on the transmitted side of the lens and
the lens is a converging lens.

 0

 optical axis

f

F F’

r1

C1

Solution for Lens(b)
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The radii of curvature for the lens (with appropriate signs) are r1 = 20cm and r2 = 10cm. Apply the lens
maker’s equation,

1

f
= (n − 1)

(

1

r1
− 1

r2

)

= (1.66 − 1)

(

1

20cm
− 1

10cm

)

.

1

f
= − 0.66

20cm

f = −30cm

Since the focal length is negative, this is a diverging lens. The secondary focal point, F ′, is placed a focal
length from the lens on the incident side of the lens, with the primary focal point, F , symmetrically placed
on the other side of the lens.

 0

 optical axis

r1r2

C1C2

f

FF’

40.2.2 Focal Point for Convex and Concave Lenses

A converging lens system brings parallel rays together at a point and a diverging lens system brings the
lines of apparent direction (the dashed lines) together at a point. This point is the secondary focal point,
F ′, of the system.

 diverging lens

 F'

 converging lens

 F'
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Optical systems work backwards. If we place a point light source at the primary focal point of a converging
lens system, parallel rays will exit the system. This is how the ray boxes in lab work. If light is shone toward
the primary focal point of a diverging lens, parallel light rays exits the system.

 diverging lens

 F

 converging lens

 F

 Primary Focal Point of a Lens

 point

light

source

40.2.3 Ray Tracing for Thin Lenses

To draw the ray diagram for a thin lens, do the following:

• Draw the lens with correct direction of curvature.

• Draw and label the secondary focal point (F ′) . The secondary focal point is the location where
incoming parallel light is focused to a point.

• Draw and label the primary focal point (F ) . The primary focal point is on the opposite side of the
lens from the secondary focal point and the same distance from the lens.

• Indicate the positive direction on the optical axis.

• Draw the location of the points s and f on the optical axis. Indicate using > 0 and < 0 whether these
quantities are positive or negative.

• Draw the Parallel Ray and label it (P ). The parallel ray leaves the object parallel to the axis and is
refracted through the secondary focal point.

• Draw the Focal Ray and label it (FF ). The focal ray lies along the line passing through the primary
focal point and the object. At the lens, the ray is refracted parallel to the optical axis.

• Draw the Central Ray and label it (CC). The central ray travels straight through the center of the
lens.

• Draw the Apparent Directions. For each ray, draw the apparent direction—the direction the outgoing

ray appears to come from. Draw the apparent direction as a dashed line.

This will be illustrated by the examples which follow. If you need more detail on drawing the ray diagram
of either a lens or mirror consult the next chapter.
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40.2.4 Computing and Describing the Image Location of a Thin Lens

The location of images for thin lenses and the magnification of systems containing thin lenses are found
with the same equations as spherical mirrors. The differences disappeared in our sign convention and the
computation of the focal length.

Thin-Lens Equation : The location of an image, s′, formed by a thin lens is given
by the thin-lens equation

1

s
+

1

s′
=

1

f

where f is the focal length and s is the object distance.

Lateral Magnification of an Image Formed Through a Thin Lens : The lateral
magnification, m, of a thin lens is

m = −s′

s

Example 40.6 Virtual Image from Convex Lens
Problem: A convex lens has a focal length of magnitude |f | = 6cm. An object is placed 2.5cm from the
lens. The dark lines on the grid below each represent 1cm.

(a)Draw the ray diagram and locate the image. Label the location of the primary and secondary
focal points.

(b)Indicate the positive direction on the optical axis. Mark important locations on the optical axis.

(c)From your ray diagram, what is the magnification and image location? Make sure to report
both with the correct sign.

(d)Describe the image based on your ray diagram.

(e)Compute the image location using the thin lens equation.

(f)Compute the magnification.

(g)Describe the image based on your computation. Tell why your calculation supports your de-
scription of the image.
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optical axisconvex lens



Solution to Part(a)

The central ray is drawn from the object through the center of the lens. The parallel ray is drawn from the
object parallel to the axis and is refracted so that is passes through the secondary focal point. The focal ray
is drawn as if it comes from the primary focal point and is refracted parallel to the axis at the lens.

optical axisconvex lens


 f 0 s

 F  F'
P(Parallel)

FF(Focal)

 s'

CC(Central)
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Solution to Part(b)

The optical axis is positive to the right, because that is the transmitted direction. Since the lens is convex,
the focal length is positive. Draw f at the appropriate point on the axis. Above f , draw the secondary focal
point, F ′. Draw the primary focal point F at an equal distance from the lens on the opposite side of the
lens. Mark the location of the object s, the image s′, and the lens 0 on the optical axis.

Solution to Part(c)

The image is 2.6cm tall and the object is 1.5cm tall, giving a magnification of m=2.6cm/1.5cm = 1.7. The
magnification is positive, because the image is upright. The image location is −4.3cm.

Solution to Part(d)

The image is upright (not flipped over), enlarged (it is taller), and virtual (it is formed of the apparent
directions of the light).

Solution to Part(e)

The Thin Lens Equation is
1

f
=

1

s
+

1

s′
.

For this system, f = +6cm and s = 2.5cm. Substitute,

1

6cm
=

1

2.5cm
+

1

s′
.

Solving for the image distance, s′ = −4.29cm.

Solution to Part(f)

The magnification is given by

m = −s′

s
= − (−4.29cm)

2.5cm
= 1.71.

Solution to Part(g)

The image is virtual (s′ < 0), upright (m > 0), and enlarged (|m| > 1).

Example 40.7 Locate and Interpret the Image Formed by a Thin Concave Lens
Problem: An object (upright arrow) is 50.0cm from a diverging lens with a focal length with magnitude of
20.0cm. Using graphical and mathematical techniques, locate and interpret the image.

Solution

c© 2007 John and Gay Stewart, The University of Arkansas 449



40.2. IMAGE FORMATION BY THIN LENSES CHAPTER 40. THIN LENSES AND MIRRORS

P

FF
CC

F’ F

s f 0s’ −f

Definitions

s = 50.0cm ≡ Distance of object from the lens’ centerline

s′ ≡ Distance of image from the lens’ centerline

m ≡ Lateral magnification of the object

f = −20.0cm ≡ Focal length for the diverging lens

F ≡ Primary focal point for the lens

F ′ ≡ Secondary focal point for the lens

(a) Draw all Possible Principal Rays: Central, Focal, and Parallel rays. Draw the situation to scale as in
the figure above.
(b) Interpret the Image: From the ray diagram, extrapolate the image and compare it to the object for
magnification and determine whether it is upright or inverted, reduced or enlarged, and a real or virtual
image. For each characteristic, give the corresponding mathematical (qualitative) interpretation. This is a
virtual s′ < 0, reduced |m| < 1, upright m > 0 image.
(c) Compute the Image Distance: Use the thin-lens equation,

1

s
+

1

s′
=

1

f
,

to solve for the image distance. The image distance is

s′ =

(

1

f
− 1

s

)−1

=

(

1

−20.0cm
− 1

50.0cm

)−1

= −14.3cm

The image distance is negative, which means a virtual image. This corresponds to the results obtained by
the graphical technique.
(d) Compute the Magnification of the Image: The magnification is found by using m = −s′/s. The
magnification is

m =
−s′

s
= −−14.3cm

50.0cm
= +0.286

Since this number is positive, the image is upright. Since it is less than one, the image is reduced. These
correspond to the results obtained by the graphical technique.
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Chapter 41

Ray Diagram Reference

This chapter is a very detailed reference to the tracing of rays through systems of thin lenses and mirrors.
It should be used as a reference and consulted when the material of the previous chapter was not enough.
An additional example is provided for each type of optical element.

41.1 Ray Tracing for Concave Mirrors

To trace the rays as they reflect off of a concave mirror to form an image, we use four principle rays: (1)
the Parallel Ray, (2) the Central Ray, (3) the Focal Ray, and (4) the Radial Ray. We will approximate the
mirror as having a large radius of curvature, so that the rays bend at the plane through the point zero and
not at the mirror’s surface. This is the approximation made in the equations we use to locate the image
later this section. In all cases which follow, the object whose image we wish to locate is represented by a
solid black arrow. The location of the object is labelled, s, on the optical axis.

Locate Landmarks for Concave Mirrors and Use Sign Convention : The center of
curvature C for the mirror is located a distance r from the mirror. The focal point
f is located a distance r/2 ≡ f from the mirror. The sign convention, as applied
to the figure below is that since both r and f are on the transmitted side of the
mirror, r > 0 and f > 0.

C  F

0f rs

Concave Mirror

451
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Draw the Parallel Ray for a Concave Mirror : Incoming light rays that are parallel
to the axis are reflected through the focal point.

• Draw the incoming ray Choose a point on the object (object point) to analyze.
Draw a solid line (with arrow) that is parallel to the axis from this object point
to the mirror (mirror point).

• Draw the line of sight Draw a faint line through the mirror point and the
focal point. The focal point is in front of the mirror.

• Draw the outgoing (reflected) ray Draw a solid line (with arrow) along the
line of sight back from the mirror point.

• Draw the apparent source direction Draw a dashed line along the line of
sight, from the mirror point away from the reflected ray.

P

C   F

0 f  rs

 P - Parallel Ray

 C - Center of Curvature
F - Focal Point

Concave 

Mirror
Apparent

Direction
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Draw the Central Ray for a Concave Mirror : Incoming light rays that strike the
mirror at its vertex are reflected away at the same angle according to the law of
reflection, since the angle from the axis is the angle from the normal at this point.

• Draw the incoming ray Choose a point on the object (object point) to analyze.
Draw a solid line (with arrow) from the object point to the vertex of the mirror
(mirror point).

• Draw the outgoing (reflected) ray Draw a solid line (with arrow) along the
line of sight back from the mirror point.

• Draw the apparent source direction Draw a dashed line behind the mirror
point in the same direction as the reflected ray.

CC

C   F

0 f  rs

 CC - Central Ray

 C - Center of Curvature
F - Focal Point

Apparent

Direction Concave 

Mirror

c© 2007 John and Gay Stewart, The University of Arkansas 453



41.1. RAY TRACING FOR CONCAVE MIRRORS CHAPTER 41. RAY DIAGRAM REFERENCE

Draw the Focal Ray for a Concave Mirror : Incoming light rays that go through
the focal point are reflected parallel to the axis.

• Draw the incoming ray Using the guide line, draw a solid line (with arrow)
from the object point to the mirror point, passing through the focal point.

• Draw the line of sight Draw a faint line parallel to the axis, which extends
through the mirror point.

• Draw the outgoing (reflected) ray Draw a solid line (with arrow) along the
line of sight back from the mirror point.

• Draw the apparent source direction Draw a dashed line along the line of
sight, from the mirror point away from the reflected ray.

FF

C   F

0 f  rs

 FF - Focal Ray

 C - Center of Curvature
F - Focal Point

Concave 

Mirror
Apparent

Direction

c© 2007 John and Gay Stewart, The University of Arkansas 454



41.1. RAY TRACING FOR CONCAVE MIRRORS CHAPTER 41. RAY DIAGRAM REFERENCE

Draw the Radial Ray for a Concave Mirror : Incoming light rays that go through
the center of curvature are reflected directly back along the same line, since θi = 0
for this case.

• Draw the incoming ray Using the guide line, draw a solid line (with arrow)
from the object point to the mirror point, passing through the center of cur-
vature (C).

• Draw the line of sight For the radial ray, which reflects back on itself, the
ray is the line of sight.

• Draw the outgoing (reflected) ray Draw an arrow along the line of sight back
from the mirror point.

• Draw the apparent source direction Draw a dashed line along the line of
sight, from the mirror point away from the reflected ray.

R

C   F

0 f  rs

 R - Radial Ray

 C - Center of Curvature

F - Focal Point
Concave 

Mirror
Apparent

Direction

Put it All Together to Form an Image: There will be a point where either the
reflected rays or the apparent directions of the reflected rays intersect at a point.
This is the image. We draw another arrow to represent the image.

The location of the image is indicated with an s′ on the optical axis. The example which follows shows how
to use ray tracing to locate and describe the image.

Example 41.1 Draw a Ray Diagram for a Concave Mirror
Problem: Given the object and mirror below, where C is the center of curvature and the object is a distance
s = 1m from the vertex of the mirror, draw a ray diagram and label the locations s′ and f . Graphically
compute the image distance, s′, and the magnification, m.
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C

0rs

Solution

First, we location the focal point which is half the distance to the lens from the center of curvature. Draw
all possible principal rays for an object point: central, radial, focal, and parallel rays. The rays intersect at a
point where the image is formed. Draw in the image. Measure the image distance and adjust for the scale. I
get sscale = 12cm and s′scale ≈ 3.5cm by measuring the figure with a ruler. Since we are given s = 1m, then
s′ ≈ (3.5cm) 1m

12cm = 30cm. Compute the magnification as image height, 0.5cm, divided by object height,
1.7cm, as measured from the image below. m ≈ −0.5cm/1.7cm = −0.3. The − enters because the image is
inverted.
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P

R FF

CC

C F

0fr s’s

41.2 Ray Tracing for Convex Mirrors

The same general process is followed for drawing the ray diagram for a convex mirror, except now the
focal point is behind the mirror.

Locate Landmarks for Convex Mirrors and Use Sign Convention : The center of
curvature C for the mirror is located a distance r from the mirror. The focal point
F is located a distance r/2 ≡ F from the mirror. The sign convention is as applied
to the figure at the right. Since both r and f are not on the transmitted side of the
mirror, r < 0 and f < 0.

 s  0

 C F

 r f

Convex Mirror
 F - Focal Point
C - Center of Curvature
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Draw the Parallel Ray for a Convex Mirror : Incoming light rays that are parallel
to the axis are reflected “through” the focal point.

• Draw the incoming ray Choose a point on the object (object point) to analyze.
Draw a solid line (with arrow) that is parallel to the axis from this object point
to the mirror (mirror point).

• Draw the line of sight Draw a faint line through the mirror point and the
focal point. The focal point will be behind the mirror.

• Draw the outgoing (reflected) ray Draw a solid line (with arrow) along the
line of sight back from the mirror point.

• Draw the apparent source direction Draw a dashed line along the line of
sight, from the mirror point away from the reflected ray.

 s  0

 C F

Parallel Ray

Apparent Direction

 r f

Convex Mirror  F - Focal Point
C - Center of Curvature
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Draw the Central Ray for a Convex Mirror : Incoming light rays that strike the
mirror at its vertex are reflected away at the same angle according to the law of
reflection.

• Draw the incoming ray Choose a point on the object (object point) to analyze.
Draw a solid line (with arrow) from the object point to the vertex of the mirror
(mirror point).

• Draw the outgoing (reflected) ray Draw a solid line (with arrow) along the
line of sight back from the mirror point.

• Draw the apparent source direction Draw a dashed line behind the mirror
point in the same direction as the reflected ray.

 s  0

 C F

Central Ray

Apparent Direction

 r f

Convex Mirror

 F - Focal Point

C - Center of Curvature
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Draw the Focal Ray for a Convex Mirror : Incoming light rays that go “through”
the focal point are reflected parallel to the axis.

• Draw a guide line Choose a point on the object (object point) to analyze.
Draw a faint line through the object point and the focal point, F .

• Draw the incoming ray Using the guide line, draw a solid line (with arrow)
from the object point to the mirror point.

• Draw the line of sight Draw a faint line parallel to the axis, which extends
through the mirror point.

• Draw the outgoing (reflected) ray Draw a solid line (with arrow) along the
line of sight back from the mirror point.

• Draw the apparent source direction Draw a dashed line along the line of
sight, from the mirror point away from the reflected ray.

 s  0

 C F

 Focal Ray

Apparent Direction

 r f

Convex Mirror

 F - Focal Point
C - Center of Curvature

Guide Line
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Draw the Radial Ray for a Convex Mirror : Incoming light rays that go “through”
the center of curvature are reflected directly back along the same line, since θi = 0
for this case.

• Draw a guide line Choose a point on the object (object point) to analyze.
Draw a faint line through the object point and the center of curvature, C.

• Draw the incoming ray Using the guide line, draw a solid line (with arrow)
from the object point to the mirror point.

• Draw the line of sight The faint line from the mirror point to the center of
curvature, C, is the light of sight.

• Draw the outgoing (reflected) ray Draw a solid line (with arrow) along the
line of sight back from the mirror point.

• Draw the apparent source direction Draw a dashed line along the line of
sight, from the mirror point away from the reflected ray.

 s  0

 C F

Apparent Direction

Radial Ray

 r f

Convex Mirror

 F - Focal Point
C - Center of Curvature

Put it All Together to Form an Image: There will be a point where either the
reflected rays or the apparent directions of the reflected rays intersect at a point.
This is the image.

The following example illustrates how to use ray tracing to locate and describe an image for a convex mirror.

Example 41.2 Ray Diagram for a Convex Mirror
Problem: A convex spherical mirror has a focal length of magnitude 4cm. Draw a ray diagram for an
object located 2cm from the vertex. Interpret the image formed.

Solution

Draw your diagram, carefully getting the focal length, radius or curvature, and the object distance to scale.
Draw your optical coordinate axis and label all these quantities. Draw an object on the diagram of a height
which makes the ray drawing convenient. Draw the four principle rays and their apparent directions. The
place where either the reflected rays or their apparent directions cross is the image. Draw an image at the
place the rays cross. Now, describe the image. The image below has the same orientation as the object and
is therefore upright. The image is smaller than the object and is therefore reduced. The image is formed by
the apparent direction of the reflected rays, so it is virtual. By measuring the image and the object height,
we can report a magnification of the image as

m =
Image Height

Object Height
=

1.33cm

2cm
= 0.67
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where I have measured the image and object height with a rule. Depending on your printer, your diagram
may be re-scaled but you should get the same ratio.

 s  0

 C F

Apparent Direction

 r f

Convex Mirror

 F - Focal Point
C - Center of Curvature

 FF - Focal Ray

 FF

P - Parallel Ray

 P

 CC - Central Ray
 R - Radial Ray

 CC

 R

 Guide Line

s'

41.3 Ray Tracing for Convex Lenses

The simplicity of the spherical geometry allows for ray diagrams to be used to locate an image. There
are three principal rays which can be drawn: (1) Parallel, (2) Central, and (3) Focal. In all of the following
diagrams, the axis at the bottom shows

• the location of the lens’ center 0

• the object distance s

• the image distance s′

• the focal length f

• and the general direction of the light after refraction (arrowhead direction)

Locate Landmarks for Converging Lens : A convex lens has two interfaces, the
centers of curvature (C1 and C2) are located r1 > 0 and r2 < 0 from their respec-
tive interfaces. The focal points (FandF ′) are located a focal length, f , from the
centerline of the lens.

F’F

s f

converging

ni nt

r1r2

C1C2

−f 0

c© 2007 John and Gay Stewart, The University of Arkansas 462



41.3. RAY TRACING FOR CONVEX LENSES CHAPTER 41. RAY DIAGRAM REFERENCE

Draw the Parallel Ray for a Converging Lens : Incoming rays that are parallel to
the axis are refracted “through” the secondary focal point, F ′.

• Draw the incoming ray Choose a point on the object (object point) to analyze.
Draw a solid line (with arrow) that is parallel to the axis from this object point
to the centerline of the lens (lens point).

• Draw the line of sight Draw a faint line through the lens point and the
secondary focal point.

• Draw the outgoing (refracted) ray Draw a solid line (with arrow) along the
line of sight that starts at the lens point and extends away from the object.

• Draw the apparent source direction Draw a dashed line along the line of
sight, which extends the outgoing ray in the opposite direction.

P

F’

s f

F

−f 0

Draw the Central Ray for a Converging Lens : Incoming rays which go through
the center of the lens are undeflected. Draw a solid line (with arrow) from the
object point through the center of the lens.

CC

 F’

s f

 F

−f 0
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Draw the Focal Ray for a Converging Lens : Incoming rays which go “through”
the primary focal point, F , are refracted parallel to the axis.

• Draw a guide line Choose a point on the object (object point) to analyze.
Draw a faint line through the object point and the primary focal point, F ,
taking care to extend the line to a point on the lens (lens point).

• Draw the incoming ray Using the guide line, draw a solid line (with arrow)
from the object point to the lens point.

• Draw the line of sight Draw a faint line parallel to the axis which extends
through the lens point.

• Draw the outgoing (refracted) ray Draw a solid line (with arrow) along the
line of sight from the lens point away from the object.

• Draw the apparent source direction Draw a dashed line along the line of
sight, from the lens point towards the object.

FF

F’

s f

F

−f 0

41.4 Ray Tracing for Concave Lenses

There are three principal rays which can be drawn: (1) Parallel, (2) Central, and (3) Focal. In all of the
following diagrams, the axis at the bottom shows

• the location of the lens’ center 0

• the object distance s

• the image distance s′

• the focal length f

• and the general direction of the light after refraction (arrowhead direction)
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Locate Landmarks for a Diverging Lens: A concave lens has two interfaces, the
centers of curvature (C1 and C2) are located r1 < 0 and r2 > 0 from their respective
interfaces. The secondary focal point F ′ is located a focal length, f , from the
centerline of the lens. The primary focal point is located a distance −f from the
center of the lens.

F’ F

s f 0 −f

diverging
ni nt

r1 r2

C1 C2

Draw the Parallel Ray for a Diverging Lens: Incoming rays that are parallel to
the axis are refracted “through” the secondary focal point, F ′.

• Draw the incoming ray Choose a point on the object (object point) to analyze.
Draw a solid line (with arrow) that is parallel to the axis from this object point
to the centerline of the lens (lens point).

• Draw the line of sight Draw a faint line through the lens point and the
secondary focal point.

• Draw the outgoing (refracted) ray Draw a solid line (with arrow) along the
line of sight that starts at the lens point and extends away from the object.

• Draw the apparent source direction Draw a dashed line along the line of
sight, which extends the outgoing ray in the opposite direction.

P

F’ F

s f 0 −f
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Draw the Central Ray for a Diverging Lens: Incoming rays which go through the
center of the lens are undeflected. Draw a solid line (with arrow) from the object
point through the center of the lens.

CC

F’ F

s f −f0

Draw the Focal Ray for a Diverging Lens: Incoming rays which go “through” the
primary focal point, F , are refracted parallel to the axis.

• Draw a guide line Choose a point on the object (object point) to analyze.
Draw a faint line through the object point and the primary focal point, F .

• Draw the incoming ray Using the guide line, draw a solid line (with arrow)
from the object point to the lens point.

• Draw the line of sight Draw a faint line parallel to the axis which extends
through the lens point.

• Draw the outgoing (refracted) ray Draw a solid line (with arrow) along the
line of sight from the lens point away from the object.

• Draw the apparent source direction Draw a dashed line along the line of
sight, from the lens point towards the object.

FF

F’ F

s f −f0
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Chapter 42

Optical Systems

Our final chapter investigates the human eye as an optical detector and some common instruments used
to enlarge objects for human viewing.

42.1 Optical Systems

42.1.1 Optical Systems Containing More than One Element

No additional physics is required to handle multiple lens/mirror systems. For each object the light
reaches, apply the lens or mirror equation with the image of one element becoming the object of the next
element. The magnification of the complete system is found as follows:

Magnification of Multiple Elements: The magnification, m, of an optical system
containing multiple elements is found by multiplying the magnification of each in-
dividual element.

m = m1m2...mN

Example 42.1 Compute the Image Distance Formed by Two Optical Elements (Mirrors
and Lenses)
Problem: An object is 4.0cm from the center of a converging lens with a focal length of 3.0cm. It is in
front of a concave mirror with a focal length of 1.875cm. The lens and the mirror are separated by 15cm of
air. Compute the final image distance from the mirror and the total magnification.

Solution

467
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optical coordinate axis (a)

D

 Lens (a)
 Mirror (b)

optical coordinate axis (b)

 intermediate image

 object

 0

 0

 final image

sb

sa fa

fb’sb

’sa

Definitions

sa ≡ Distance of object from element a

sb ≡ Distance of image from element b

sa ≡ Distance of intermediate image from element a

sb ≡ Distance of intermediate object from element b

fa ≡ Focal length of element a

fb ≡ Focal length of element b

D ≡ Separation between the optical elements

Strategy: Compute the intermediate image distance of the first lens and then use this as the object for the
second lens.
(a) Draw the Optical System: Draw the real optical axis and the optical elements on the real optical axis.
Draw the optical coordinate axis for both elements. The optical coordinate axis for a lens points to the
right. The optical coordinate axis for the mirror points to the left. The axes have difference origins, which
are marked on each axis.
(b) Compute the Image Distance as Formed by Element a: Use Focal length version of the thin-lens
equation. The intermediate image distance is, from the thin lens equation:

1

sa
+

1

s′a
=

1

fa
.

s′a =

(

1

fa
− 1

S

)−1

=

(

1

3.0cm
− 1

4.0cm

)−1

= 12cm

(c) Compute the Magnification of Lens (a): The magnification is given by

ma = −s′a
sa

= − 12cm

4.0cm
= −3
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(d) Calculate the Object Distance for Element b: The object distance for the mirror is

sb = D − s′a = 15cm − 12cm = 3.0cm

The intermediate image is drawn in gray and is between the lens and mirror.
(e) Compute the Image Distance as Formed by Element b: The focal length of the concave mirror is
on the positive part of the mirror’s optical axis The image distance from the mirror found from the mirror
equation is

1

sb
+

1

s′b
=

1

fb

s′b =

(

1

fb
− 1

sb

)−1

=

(

1

1.875cm
− 1

3.0cm

)−1

= 5cm

(f) Compute the Magnification of Mirror b: The magnification of element (b) is

mb = −s′b
sb

= −5cm

3cm
= −1.67

(g) Compute the Total Magnification of the System: The total magnification is the product of the
magnifications,

mT = mamb = (−3)(−1.67) = 5

The final image distance, s′b, is positive, so the image is real. The magnification |mT | > 1 so the object is
enlarged and mT > 0 for an upright image.

42.1.2 Virtual Objects

If our optical system only has one lens or mirror, then the convention that the object distance is always
positive works just fine. When we have more that one optical element, the first element light reaches forms
an intermediate image. This image becomes the object of the second element. The intermediate object can
form on either the incident or transmitted side of the second element. It cannot be that the object distance is
positive for both these cases. When the intermediate image forms on the transmitted side of second element,
it becomes a virtual object, and has a negative object distance.

Virtual Object: A virtual object is an object formed as an intermediate image on
the transmitted side of an optical element. A virtual object has a negative object
distance.

The example which follows illustrates a system that forms a virtual object for the second lens.

Example 42.2 System with Virtual Objects
Problem: An object is a distance of 30cm from a convex lens with focal length 10cm. A second concave
lens is a distance 12cm from the first lens and has focal length −4cm. Locate and describe the final image
of the system.

Solution

(a) Compute the Intermediate Image: The thin lens equation locates the image of the first lens,

1

f1
=

1

s1
+

1

s′1
⇒ 1

10cm
=

1

30cm
+

1

s′1

The intermediate image distance is s′1 = 15cm. The magnification of the first lens is

m1 = −s′1
s1

= −15cm

30cm
= −1

2

The image forms to the right, on the transmitted side, of the second lens. It forms a virtual object for this
lens.
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optical coordinate axis 1convex lens

 0

optical coordinate axis 2

 0

 concave lens

 final image

F1
’F2

’F1 F2

−f1 f1s1

s2

s1’

s2’−f2f2

(b) Calculate the Object Distance for Lens 2: The object distance for the second lens is s2 = d − s′1 =
12cm − 15cm = −3cm.
(c) Calculate the Final Image Location: The thin lens equation locates the image of the second lens,

1

f2
=

1

s2
+

1

s′2
⇒ 1

−4cm
=

1

−3cm
+

1

s′2

The final image distance is s′2 = 12cm. The magnification of the second lens is

m2 = −s′2
s2

= − 12cm

−3cm
= +4

(d) Describe the Image: The total magnification is the product of the magnifications of the individual
lenses, mT = m1m2 = (− 1

2 )(4) = −2. The final image is real (s′2 > 0), inverted (mT < 0), and enlarged
(|mT | > 1).

42.2 The Eye

In the sections that follow, we will investigate the properties of some simple optical systems; the mag-
nifying glass, the microscope, and the telescope. The purpose of all these devices is to make objects look
bigger to the human eye. We have to begin our investigation with the function of the human eye. The eye
behaves as a simple convex lens with a variable focal length. The magnifying power of the eye arises from
two elements: the cornea and the crystalline lens. The focal length of the crystalline lens can be altered
making the focal length of the system variable. The crystalline lens is not actually crystal, but layers of
fiber. The eye focuses incoming light rays on the retina where they are converted to electrical signals that
are transmitted to the brain by the optic nerve.
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The Eye: The main parts of
the human eye are drawn to
the right. The focal length
of the crystalline lens can be
changed to change the focal
length of the eye. The eye is
mostly filled with clear liquid
whose index of refraction is
near that of water called the
aqueous humor and vitreous
humor.

 retina

 optic
 nerve

 cornea

 aqueous humor

 crystalline lens

 vitreous humor

Focal Length of Eye: The human eye has an effective focal length of 1.7cm. This
treats the combination of the cornea, crystalline lens, and humors as a simple thin
lens in air. The actual size of the eye is 2.4cm and the final image is formed in the
vitreous humor.

To change the focal length of the eye, muscles in the eye must exert a force on the crystalline lens. When
these muscles are relaxed the eye is said to be relaxed. A well-functioning eye will focus incoming parallel
rays on the retina when relaxed with focal length 1.7cm. Since many of you have glasses, not all eyes are
well-functioning. The point where an object must be placed for the image to be focussed on the retina by a
relaxed eye is called the far point of the eye. For a well-functioning eye, the far point is at infinity.

The Far Point: The far point
of the human eye is the point
that is in focus for a relaxed
eye. For a normal eye, the far
point is at infinity.

 Far Point of Normal Eye is at Infinity

 Far Point of Abnormal Eye

As an object is brought in from infinity the eye changes the focal length of the crystalline lens to keep
the image of object focussed on the retina. This shift in focal length is called accommodation. As the object
gets close to the eye, the eye can no longer change its focal length to focus the image on the retina. The
closest point the eye can focus is called the near point.

The Near Point of the Eye: The near point of the human eye is the closest point
where an object can be placed so that its image is focussed on the retina. The near
point is about 7cm for a teenager, 12cm for a young adult, 28cm− 40cm in middle
age, and 100cm at age 60. The near point of a normal eye is taken to be ℓnp = 25cm
for optical calculations.
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A relaxed eye has focal length fr = 1.7cm which focusses parallel rays on the retina. The near point of a
normal eye is about ℓnp = 25cm. An object placed at the near point is focussed on the retina by an eye at
its minimum focal length. We can calculate the focal length of the normal eye at maximum accommodation
using the thin lens equation,

1

fnp
=

1

ℓnp
+

1

fr
⇒ 1

fnp
=

1

25cm
+

1

1.7cm

Solving for the focal length, gives the focal length at maximum accommodation of fnp = 1.59cm.
We can understand common eye problems in terms of the near and far point of the eye.

Nearsightedness: An eye is
nearsighted or myopic if par-
allel light rays are focussed
to a point in front of the
retina. Distant objects are
blurry. For a nearsighted eye,
the far point is not at infinity.

 Parallel Rays Focussed in Front of Eye

 Far Point of Nearsighted Eye

Farsightedness: Hyperopia
or farsightedness happens
when parallel rays are fo-
cussed beyond the retina.
The eye must accommodate
to bring far objects into fo-
cus. There is a limit to the
amount of accommodation so
the near point of the eye is
much larger than the normal
near point of 25cm. There-
fore, objects near the eye are
blurry.

 Parallel Rays Focussed Behind of Eye

 Near Point of Farsighted Eye

 Normal Near Point

The magnification m we have been calculating is of limited use when evaluating the function of optical
instruments. For example, no matter how you cut it, the image of a star formed in a telescope is smaller
than the star itself.
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Angular Magnification or Magnifying Power (MP): The magnifying power, MP ,
or angular magnification of an optical system is the ratio of the angle formed by
the image on the retina using the optical system, αs, to the angle formed without
the optical system at the eyes normal viewing distance, αu. The normal viewing
distance is usually taken as the near point.

MP =
αs

αu

 near point

 image

αu αs

42.3 A Simple Magnifier

Our first optical system is the simple magnifier or more commonly the magnifying glass. This is a single
lens that is used to make small objects appear bigger to the human eye.

Example 42.3 Magnifying Power of a Magnifying Glass
Problem: My daughter’s magnifying glass has a focal length of 30cm. An object is 10cm from the lens. I
hold the lens so the length from the lens to my eye is the focal length. Calculate the magnifying power of
the lens and the magnification of the lens.

Solution

(a) Draw the System: The important distances are the distance of the eye to the near point ℓnp, the
distance of the lens to the eye ℓe = f , and the distance of the image to the eye ℓi.
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convex lens

 f 0 s s’

 F’ Near Point

i

np

e

αs

(b) Solve for the image location: The location of the image can be found by the thin lens equation as
usual

1

f
=

1

s
+

1

s′
⇒ 1

30cm
=

1

10cm
+

1

s′

Solving for the image distance yields, s′ = −15cm and a magnification of m = −s′/s = −(−15cm)/(10cm) =
3
2 .
(c) Solve for the Magnifying Power: The magnifying power MP of the lens is the ratio of the angle αs

the image using the optical system makes on the retina to the angle αu on the retina with only the unaided
eye. The angle αu is calculated with the object at the near point, the closest it can be brought and still be in
focus, αu = h0/ℓnp where h0 is the height of the object and I continue to use the small angle approximation
to turn tanα into α. With the lens, the angle on the retina is αs = hi/ℓi where ℓi is the distance of the
image to the eye and hi is image height. The magnifying power is defined as

MP =
αs

αu
=

hi

ho

ℓnp

ℓi

The ratio of the image height to the object height is the magnification m = hi/ho = 3
2 . The distance of the

image to the eye is, observing the diagram, ℓi = ℓe − s′ = 30cm − (−15cm) = 45cm. I will use the standard
value of ℓnp = 25cm for my near point, so the magnifying power of the lens for this ℓe and s is

MP =
hi

ho

ℓnp

ℓi
=

3

2

25cm

45cm
= 0.833

For this choice, the object actually appears smaller than it would if observed without the glass at the near
point. In what follows, we investigate this system in general to find magnifying powers greater than 1. Note
the difference between the magnification and the magnifying power.

If we use the distances set up in the example, ℓnp the near point distance, ℓi the distance of the image to
the eye, and ℓe the distance of the lens to the eye we can develop a general expression for magnifying power
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and investigate some useful case. As in the example, the magnifying power is

MP =
αs

αu
=

hi

ho

ℓnp

ℓi

and the magnification is defined as

m = −s′

s
=

hi

ho

so the magnifying power can be written

MP = −s′

s

ℓnp

ℓi

If we re-arrange the lens equation,

1

f
=

1

s
+

1

s′
⇒ s′

s
=

s′

f
− 1

so the magnifying power can be written,

MP =

(

1 − s′

f

)

ℓnp

ℓi

The image distance is related to the distance of the image to the eye by s′ = ℓe − ℓi, since the image distance
is negative.

MP =

(

1 +
ℓi − ℓe

f

)

ℓnp

ℓi

Magnifying Power of a Magnifying Glass: The magnifying power of a single lens
of focal length f is

MP =

(

1 +
ℓi − ℓe

f

)

ℓnp

ℓi

where ℓi is the distance from the image to the eye, ℓe is the distance from the lens
to the eye, and ℓnp is the distance from the eye to the near point.

So let’s play with this expression a little and investigate some importance cases:

• Case I: ℓe = 0: Suppose we’re holding the glass very close to the eye so that ℓe = 0. In this case the
magnifying power becomes

MP =

(

1 +
ℓi − ℓe

f

)

ℓnp

ℓi
=

(

1

ℓi
+

1

f

)

ℓnp

In this case, the magnifying power increases as the distance of the image to the eye decreases. The
closest the image can be brought to the eye and still be in focus is the near point, so the maximum
magnifying power in this case is

MPmax,ℓe=0 =

(

1

ℓnp
+

1

f

)

ℓnp = 1 +
ℓnp

f

For my daughter’s lens used in the example, the maximum magnifying power in this case is

MPmax,ℓe=0 = 1 +
ℓnp

f
= 1 +

25cm

30cm
= 1.833

• Case II: ℓe = f : I can also hold the lens so the eye is at its focal point. In this case,

MPℓe=f =

(

1 +
ℓi − ℓe

f

)

ℓnp

ℓi
=

(

1 +
ℓi − f

f

)

ℓnp

ℓi
=

ℓnp

f

This was the case used in the example, because it was easy to draw, and we reproduce the magnifying
power found in the example MP = 25cm/30cm = 0.833.
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• Case III: ℓi = ∞ If we place the object a focal length’s distance from the lens, the image forms at
negative ∞ and the magnifying power is

MP =

(

1 +
ℓi − ℓe

f

)

ℓnp

ℓi
=

(

1

ℓi
+

ℓi − ℓe

fℓi

)

ℓnp =

(

1

∞ +
∞− ℓe

f∞

)

ℓnp =
ℓnp

f

So for my daughter’s lens, MPℓi=∞ = 0.833 It is this case, that is used to determine the power of a
lens.

Power of a Lens: The power of a lens is the magnifying power when ℓi = ∞,
MP =

ℓnp

f , and is reported as MPx. If a lens has a magnifying power MP = 2
when the image is at infinity, then the lens is a 2x lens.

My daughter’s lens is rated at 2x so those dirt bags used a child’s near point to rate the lens.

42.4 The Compound Microscope

With an understanding of a simple magnifier, we can understand another common optical system, the
compound microscope. A compound microscope improves the performance of a simple magnifier by adding
a second lens, called an objective. The objective forms a real enlarged image of the object somewhere in
the microscope tube. A simple magnifier, called the eyepiece, is placed so that the image of the objective is
at the focal point of eyepiece (Case III above) to further magnify the image. The important features of a
microscope are drawn below. The large squares are 2cm wide.

 objective

 0
 s

 s’

 eyepiece

 L

 intermediate Image

−fo fo

fo fe

αs

The distance L between the focal points of the objective and eyepiece is called the tube length. Normally,
the tube length is chose to be L = 16cm as used in the figure. The microscope drawn uses an objective with
focal length fo = 2cm and an eyepiece with focal length fe = 4cm. We already know how to calculate the
magnifying power of an eyepiece, a simple magnifier, where the object is at the focal point leaving the image
at infinity, MPeyepiece = ℓnp/fe = 25cm/4cm = 6.25. Therefore the eyepiece is a 6x eyepiece. The function
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of the objective is to make the object larger. The magnification of the objective is m = −s′/s. The image
distance is fo + L, so using the thin lens equation

1

s
+

1

s′
=

1

fo
⇒ s′

s
+ 1 =

s′

fo

m = −s′

s
= 1 − s′

fo
= 1 − fo + L

fo
= − L

fo

The total magnifying power of the microscope is the product of the magnification of the objective and the
magnifying power of the eyepiece,

MP = m · MPeyepiece =

(

− L

fo

)(

ℓnp

fe

)

Magnifying Power of Microscope: The magnifying power of a compound micro-
scope is given by

MP =

(

− L

fo

)(

ℓnp

fe

)

= MPobjective · MPeyepiece

where L is the tube length, the distance between the two focal points, fo is the focal
length of the objective, and fe is the focal length of the eyepiece.

Magnifying Power of the Objective: The magnifying power of a microscope ob-
jective is

MPobjective =

(

− L

fo

)

If L = 16cm and fo = 1.6cm, then MP = 10 and the objective is a 10x objective.

For the microscope drawn in above the magnifying power of the objective is MPobjective = −16cm/2cm =
−8 so the objective is an 8x objective. The total magnifying power of the microscope MP = MPobjectiveMPeyepiece =
(−8)(6.25) = −50 or 50x.

Example 42.4 Reverse Engineering a Microscope
Problem: Let’s do a little reverse engineering off the internet. A student microscope is advertised with
a 10x objective and a 4x eyepiece. Find the local lengths of the eyepiece and the objective, the distance
between the lenses, the total power, and the object location.

Solution

(a) Compute the Focal Length of the Objective: The magnifying power of the objective is MPobjective =

10 =

∣

∣

∣

∣

L
fo

∣

∣

∣

∣

so the focal length of the objective is fo = L/10 = 1.6cm.

(b) Compute the Focal Length of the Eyepiece : The magnifying power of the eyepiece is MPeyepiece =

4 =

∣

∣

∣

∣

ℓnp

fe

∣

∣

∣

∣

so the focal length of the eyepiece is fe = ℓnp/4 = 6.25cm.

(c) Compute the Distance Between the Lenses: Reviewing the diagram at the beginning of the section,
the distance between the lenses is fo + L + fe = 1.6cm + 16cm + 6.25cm = 23.85cm
(d) Compute the Total Power: The total power of the microscope is the product of the magnifying power
of the objective and the magnifying power of the eyepiece, MP = 10 × 4 = 40.
(e) Compute the Object Location: The object must be placed to produce an image at s′ = L + fo. Using
the thin lens equation,

1

s
+

1

s′
=

1

fo
⇒ 1

s
+

1

L + fo
=

1

fo
⇒ 1

s
+

1

17.6cm
=

1

1.6cm

So the object distance, s = 1.76cm.
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42.5 The Telescope

Telescopes are used to make distant objects appear larger to the human eye. Some telescopes use lenses
for the objective and are called refracting telescopes. Some telescopes use a concave mirror for the objective
and are called reflecting telescopes. It is easier to make and support big mirrors than it is to make big lenses,
so large telescopes are reflecting while small telescopes are generally refracting. Both types of telescopes
are arranged so the secondary focal point of the objective falls at the same place as the primary focal point
of the eyepiece. Since telescopes are used to view distant objects, the incoming rays are nearly parallel. A
simple refracting telescope is drawn below.

 objective  eyepiece

fo fe

Unfortunately this diagram is completely useless, because it appears since the telescope moves parallel
rays together, that it makes objects smaller. A telescope views an angle αu of a distant object. Since the
length of the telescope is negligible when compared to the object distance, αu is the angle the image of the
object makes on the retina without the telescope. Trace this ray through the telescope.
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 objective  eyepiece

 h

 F

fo fe

αu

αs

e

The magnifying power is the ratio MP = −αs/αu. The negative sign is needed because the image is
inverted. If the ray hits the eyepiece a distance h from the axis and ℓe is the distance from the eyepiece to
the eye, then using the small angle approximation, αu = h/(fo + fe) and αs = h/ℓe. The magnifying power
is then

MP = −αs

αu
= − h/ℓe

h/(fo + fe)
= −fo + fe

ℓe

We can find ℓe by noting that since the ray passes through the center of the objective, it behaves as if it
came from a point object at the objective, so we can use the thin lens equal to determine where it again
intersects the axis at the eye. The object distance is the distance between the lenses, s = fo + fe, and the
image distance is s′ = ℓi,

1

s
+

1

s′
=

1

fe
⇒ 1

fo + fe
+

1

ℓi
=

1

fe

Therefore,
1

ℓi
=

1

fe
− 1

fo + fe
=

fo

fe(fo + fe)

and the magnifying power

MP = −fo + fe

ℓe
= −(fo + fe)

fo

fe(fo + fe)
= −fo

fe

Magnifying Power of the Telescope: The magnifying power of a telescope is

MP = −fo

fe

A refracting telescope works the same way, with the focal point of the eyepiece placed at the same point
as the focal point of the mirror. We have an additional problem, we have to get the light out of the telescope
somehow. Most refracting telescopes you see in stores use a plane mirror to bend the rays from the objective
out the side of the tube to the eyepiece.
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 F

 Focal Point of Objective

 F

 eyepiece

 Reflecting Telescope with Eyepiece

Example 42.5 Magnifying Power of a Telescope
Problem: My daughter Kat bought a telescope from Wal-mart with the money she earned grading lecture
quizzes. The telescope is the fifty dollar reflecting scope. It has an objective with focal length fo = 70cm
and an eyepiece with focal length 2.5cm. Calculate the power of the telescope.

Solution

The magnifying power is −fo/fe = −70cm/2.5cm = −28 or 28x.
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Appendix

43.1 Units

A list of unit conversions follows:

Newton(N): The Newton is the unit for force,

1N = 1
kgm

s2

Joule(J): The joule is unit for energy,

1J = 1
kgm2

s2
= 1Nm

Ampere(A): The Ampere is the unit used to measure current

1A = 1
C

s

Volt(V): The volt is the unit of potential difference and emf ,

1V = 1
Nm

C

Ohms (Ω): The unit for resistance is the Ohm,

1Ω = 1
V

A
= 1

Nms

C2
= 1

Js

C2

Tesla(T): A tesla is the unit used for a magnetic field,

1T = 1
Ns

Cm
= 1

N

Am

A related unit is the Gauss, 1T = 1 × 104G.

Weber(Wb): The Weber is the unit for magnetic flux

1Wb = 1Tm2

Henry(H): The Henry is the unit for inductance,

1H = 1
Wb

A
= 1

Tm2

A
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43.2 Constants

The Speed of Light(c) c = 3 × 108 m
s

Permittivity of Free Space(ε0) ε0 = 8.85 × 10−12 C2

Nm2 .

Permeability of Free Space(µ0) µ0 = 4π × 10−7 Tm
A .

k k = 1/4πε0 = 8.99 × 109 Nm2

C2 .

Quantum of Charge (e) e = 1.602 × 10−19C.

Charge of Proton qp = +e = 1.602 × 10−19C.

Charge of Electron qe = −e = −1.602 × 10−19C.

Mass of Electron me = 9.11 × 10−31kg.

Mass of Proton mp = 1.67 × 10−27kg

Acceleration of Gravity(g) g = 9.81m
s2 .

43.3 Presenting your Work

We will work with you to improve the quality of the presentation of your written work. This is partially
selfish because we have to read your work and you wouldn’t believe some of the stuff that gets dumped on us.
Mostly, however, it is to help you become a better student. When you write a solution to a physics problem,
you are explaining your reasoning to yourself. When your description is incomplete, your explanation to
yourself is incomplete, and probably your understanding is incomplete. Very messy work hides errors. At
minimum, on a test, we require a good solution for full credit. A good solution includes:

• Diagram if Requested

• Symbolic Formulas

• Calculation with symbols not numbers

• Substitution with units

• Answer with units and vectors (if appropriate)

• Vital Reasoning in English

Example 43.1 Example of a Good Solution
Problem: One point charge with charge 3nC exerts a force of 100N on another point charge with charge
5nC. Compute separation of the charges.

Solution

F =
kq1q2

d2
Formula

d =

√

kq1q2

F
Symbolic solution

d =

√

(8.99 × 109 Nm2

C2 )(3nC)(5nC)

(100N)
Substitution with units

d = 2.12 × 10−5m An answer with units
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Note, since this is a simple application of a formula no English description is required for a good solution
and no diagram was requested.

The above is pretty minimal. If any steps were left out of the above example, it would be an example of
a poor solution and might not score all the points it deserved on a homework or a test. A great solution will
also have

• A diagram, even if the problem doesn’t specifically ask for one.

• Explanation of what is being done in words. In this case, Use Coulomb’s for the electric force and
solve for the separation, d.

• Guiding English, section headings, formula names, etc. In this case the phrase Apply Coulomb’s Law.
Solve for separation.

• Vital reasoning explained in complete sentences. None was needed in the example.

Example 43.2 Example of a Great Solution
Problem: One point charge with charge 3nC exerts a force of 100N on another point charge with charge
5nC. Compute separation of the charges.

Solution

Strategy: Use Coulomb’s law and then solve for the separation.

(a) Use Coulomb’s Law for the electric force,: Since both
charges are positive the force is repulsive.

F =
kq1q2

d2

 3nC  5nC
 F

(b) Solve for Separation:

d =

√

kq1q2

F

d =

√

(8.99 × 109 Nm2

C2 )(3nC)(5nC)

(100N)

d = 2.12 × 10−5m

Note, a reader can tell what is going on from the English, they don’t have to guess from the math.
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