PHYS 3414 - Electricity and Magnetism- Homework Set 1
 Cal III (Chapter 1) and UPII Review

Due 12:30pm Wednesday January 23, 2007 at the beginning of class.

Good's Problems

1.12 - Part (c) is incredibly tedious. Prove the relation only for the x-component.
1.16
1.18
1.20
1.24
1.26 You must do this using one of the forms of Stoke's Thm. Note: $(d \vec{a} \times \nabla) \times \vec{r} \neq d \vec{a} \times(\nabla \times \vec{r})$

Additional Problems

Problem A1 This problem takes you through the calculation of the electric field of a finite cylinder with uniform volume change density ρ through a sequence of simpler calculations.
(a) Compute the electric field along the axis of a ring of charge with charge density λ and radius R. Let the axis of symmetry be the z axis, with the ring lying in the $x-y$ plane.
(b) Use the result of this calculation to calculate the field along the axis of a disk with uniform surface charge density σ and radius R. Let the axis of symmetry be the z axis, with the disk lying in the $x-y$ plane.
(c) Check your calculation by showing your result becomes the field of an infinite plane in the limit $R \rightarrow \infty$.
(d) Use the result in (b) to calculate the electric field along the axis outside of a cylinder of uniform volume charge density ρ and radius R. The cylinder occupies the region $-L<z<L$ along the z-axis.

Problem A2 Consider the unit vectors that form cylindrical coordinates $(\hat{\rho}, \hat{\phi}, \hat{z})$ and spherical coordinates $(\hat{r}, \hat{\phi}, \hat{\theta})$.
(a) Draw the unit vectors for an arbitrary point in Cartesian coordinates for each system of coordinates.
(b) Express each unit vector in terms of $x, y, z, \hat{x}, \hat{y}, \hat{z}$.
(c) Using a set of vectors, draw the fields $\vec{E}=\gamma \hat{\rho}, \vec{E}=\gamma \hat{\phi}, \vec{E}=\gamma \hat{r}$, and $\vec{E}=\gamma \hat{\theta}$.
(d) For which of the above, do you expect $\nabla \cdot \vec{E} \neq 0$ or $\nabla \times \vec{E} \neq 0$? Why?
(e) Compute $\nabla \cdot \vec{E}$ and $\nabla \times \vec{E}$ for each field in part (c).
(f) Compute $\nabla \cdot \vec{E}$ and $\nabla \times \vec{E}$ for $\vec{E}=\gamma \hat{\phi}$ and $\vec{E}=\gamma \hat{r}$ in Cartesian coordinates.

UPII Problems

Problem A3 (a) A sphere containing a uniform volume charge density, $\rho=100.0 \mu \mathrm{C} / \mathrm{m}^{3}$, has radius 5.0 cm . Compute the total charge of the sphere.
(b) A cylinder with length 0.20 m and diameter 6.0 cm has uniform surface charge, $\sigma=10.0 \mu \mathrm{C} / \mathrm{m}^{2}$. Compute the total charge of the cylinder, excluding the ends.

Problem A4 In class you compared the strength of the electric force on an electron due to a proton to the strength of the gravitational force on an electron due to a proton. Which of the following best describes the relationship?

> Select One of the Following:
(a) The forces have about the same strength
(b) Gravity is a little stronger
(c) The electric force is a little stronger
(d) Gravity is a lot stronger
(e) The electric force is a lot stronger

Problem A5 On the first day of class, I computed the energy that would be liberated if all the electrons disappeared from block of carbon. In this problem, we evaluate how much force would be required to separate the electrons from the protons. The protons in a 2 oz block of carbon have charge $2 \times 10^{6} \mathrm{C}$ and the electrons have charge $-2 \times 10^{6} \mathrm{C}$. Suppose the protons and electrons are separated by a distance of 10 cm . What is the magnitude of the attractive force between the ball of protons and the ball of electrons if they are treated as point charges?

