PHYS 3414 - Electricity and Magnetism- Homework Set 11

Practice for Test 3. Some of these problems are too difficult for a test, but parts of them would make good test questions.

1 A point charge, q, is a distance D from the center of a grounded conducting sphere of radius R. Compute the potential at a distance $D / 2$ on a line between the point charge and the center of the sphere.

2 A capacitor is formed of two plates that are not quite parallel. One plate is in the $x-y$ plane and the other plate is tipped at an angle α from the $x-y$ plane. The nearest point between the two plates has separation d. The plates are square and have area of the plates is $A=\ell^{2}$ and they are filled with a dielectric with relative permittivity ϵ_{r}. Compute the capacitance ignoring fringing.
3 A sphere of radius a is held at potential V_{0}. Compute the potential and field at a distance $4 a$ from the origin.

4 A sphere of radius a is held at a potential $V=V_{0}(\cos \theta+1)$. Compute the field inside the sphere.
5 A dielectric cylinder with radius a and relative permittivity ϵ_{r} is placed in a uniform field such that the field far from the cylinder is $\vec{E}=E_{0} \hat{x}$. Compute the field everywhere.

6 A thin infinite cylinder with radius a is covered with a surface charge density σ. The cylinder is parallel to an infinite grounded conducting plane and is a distance D from the plane. Compute the force per unit length on the cylinder.

7 A channel, infinite in the z direction, has potential on the surface $V(x, 0)=0, V(a, y)=0, V(x, b)=0$, and $V(0, y)=V_{0} \sin (2 \pi y / b)$. Compute the field at the center of the channel.

8 A cylindrical system with radius a has potential $V_{i}=A \rho^{4} \cos (4 \phi)$ inside and $V_{o}=B \rho^{-4} \cos (4 \phi)$ outside. Compute the charge density on the surface.
9 An infinite cylinder of radius a is held at potential V_{0} for $0<\phi<\pi / 2$ and zero for $\pi / 2<\phi<2 \pi$. Compute the potential outside the cylinder.

10 A sphere of radius a is held at potential V_{0} for $0<\theta<\pi / 4$ and zero for $\pi / 4<\theta<\pi$. Compute the first two non-zero terms in the expansion of the potential outside the sphere.

