PHYS 3414 - Electricity and Magnetism- Homework Set 11

Practice for Test 3. Some of these problems are too difficult for a test, but parts of them would make good test questions.

1 A point charge, q, is a distance D from the center of a grounded conducting sphere of radius R. Compute the potential at a distance D/2 on a line between the point charge and the center of the sphere.

2 A capacitor is formed of two plates that are not quite parallel. One plate is in the x - y plane and the other plate is tipped at an angle α from the x - y plane. The nearest point between the two plates has separation d. The plates are square and have area of the plates is $A = \ell^2$ and they are filled with a dielectric with relative permittivity ϵ_r . Compute the capacitance ignoring fringing.

3 A sphere of radius a is held at potential V_0 . Compute the potential and field at a distance 4a from the origin.

4 A sphere of radius a is held at a potential $V = V_0(\cos \theta + 1)$. Compute the field inside the sphere.

5 A dielectric cylinder with radius a and relative permittivity ϵ_r is placed in a uniform field such that the field far from the cylinder is $\vec{E} = E_0 \hat{x}$. Compute the field everywhere.

6 A thin infinite cylinder with radius *a* is covered with a surface charge density σ . The cylinder is parallel to an infinite grounded conducting plane and is a distance *D* from the plane. Compute the force per unit length on the cylinder.

7 A channel, infinite in the z direction, has potential on the surface V(x,0) = 0, V(a,y) = 0, V(x,b) = 0, and $V(0,y) = V_0 \sin(2\pi y/b)$. Compute the field at the center of the channel.

8 A cylindrical system with radius *a* has potential $V_i = A\rho^4 \cos(4\phi)$ inside and $V_o = B\rho^{-4} \cos(4\phi)$ outside. Compute the charge density on the surface.

9 An infinite cylinder of radius *a* is held at potential V_0 for $0 < \phi < \pi/2$ and zero for $\pi/2 < \phi < 2\pi$. Compute the potential outside the cylinder.

10 A sphere of radius a is held at potential V_0 for $0 < \theta < \pi/4$ and zero for $\pi/4 < \theta < \pi$. Compute the first two non-zero terms in the expansion of the potential outside the sphere.