## PHYS 3414 - Electricity and Magnetism- Homework Set 9

## Test Review

These will not be collected. I wrote these in a hurry. Centennial is killing me (or is it you). Solutions are posted. I worked them quickly, so I don't guarantee the details. Problem 2 contains a step that can not be completed during a test.

1 A sphere of radius $a$ has a polarization that changes with radius according to the function $\vec{P}=\gamma r \hat{r}$ where $\gamma$ is a constant. Compute $\vec{E}, \vec{D}$, and any bound charge.

2 A conducting sphere of radius $a$ is held at voltage $V_{0}$. The sphere is coated with a dielectric of thickness $d$ where the dielectric constant changes linearly from $\epsilon_{a}$ to $\epsilon_{b}$ over its thickness. Find the capacitance of the sphere with respect to ground. This contains a step that is too difficult for a test question.

3 A loop of wire carries current $I$ and has radius $R$. Set up the integral you would use to calculate the vector potential inside the loop but in the plane of the loop. Simplify until a one-dimensional integral results.

4 Compute the energy of a plasma of charge confined to a sphere of radius $a$ where the charge density inside is $\gamma=$ constant and the charge density outside is zero.

5 A square permanent magnet of height 1 mm and sides of length 1 cm is in the $x-y$ plane. The magnetization is $\vec{M}=M_{0} \hat{z}$, where $M_{0}=1 \times 10^{6} \mathrm{~A} / \mathrm{m}$. Compute the field at a point 1 cm from the magnet along the $z$-axis.

6 A square permanent magnet of height 1 mm and sides of length 1 cm is in the $x-y$ plane. The magnetization is $\vec{M}=M_{0} \hat{z}$, where $M_{0}=1 \times 10^{6} \mathrm{~A} / \mathrm{m}$. Approximate the field at a point 10 cm from the magnet along the $z$ axis.

7 A current sheet carries current $1 \mathrm{~A} / \mathrm{m}$ in the $\hat{x}$ direction. Parallel to the sheet, a wire carries current 1A in the $x$-direction a distance $d$ above the sheet. Compute the force per unit length on the wire.

8 A cylindrical capacitor with inner radius $a$ and outer radius $b$ is filled with a dielectric with susceptibility $\chi_{e}$ and conductivity $\sigma$. If a voltage $V_{0}$ is established across the conductors, compute the current per unit length between the conductors.

9 A cylindrical capacitor with inner radius $a$ and outer radius $b$ is filled with a dielectric with susceptibility $\chi_{e}$ and conductivity $\sigma$. If a voltage $V_{0}$ is established across the conductors, compute the energy stored per unit length.

10 A square of wire with sides $\ell$ and cross-section $A$ lies flat in the $x-y$ plane in a uniform magnetic field that is changing as $\vec{B}=B_{o} \hat{z} \cos (\omega t)$. The wire has resistivity $\rho$. Compute the current as a function of time. Indicate the direction of the current from $t=0 t o t=\pi / 2 \omega$.

11 A cylindrical rod of iron $\left(\mu_{r}=200, r=a\right)$ partially fills a long solenoid $\left(N^{\prime}, I, r=b\right)$. Compute the inductance per unit length.

