PHYS 3414 - Electricity and Magnetism- Homework Set 9

Test Review

These will not be collected. I wrote these in a hurry. Centennial is killing me (or is it you). Solutions are posted. I worked them quickly, so I don't guarantee the details. Problem 2 contains a step that can not be completed during a test.

1 A sphere of radius *a* has a polarization that changes with radius according to the function $\vec{P} = \gamma r \hat{r}$ where γ is a constant. Compute \vec{E} , \vec{D} , and any bound charge.

2 A conducting sphere of radius *a* is held at voltage V_0 . The sphere is coated with a dielectric of thickness *d* where the dielectric constant changes linearly from ϵ_a to ϵ_b over its thickness. Find the capacitance of the sphere with respect to ground. This contains a step that is too difficult for a test question.

3 A loop of wire carries current I and has radius R. Set up the integral you would use to calculate the vector potential inside the loop but in the plane of the loop. Simplify until a one-dimensional integral results.

4 Compute the energy of a plasma of charge confined to a sphere of radius a where the charge density inside is γ =constant and the charge density outside is zero.

5 A square permanent magnet of height 1mm and sides of length 1cm is in the x-y plane. The magnetization is $\vec{M} = M_0 \hat{z}$, where $M_0 = 1 \times 10^6 \text{ A/m}$. Compute the field at a point 1cm from the magnet along the z-axis.

6 A square permanent magnet of height 1mm and sides of length 1cm is in the x-y plane. The magnetization is $\vec{M} = M_0 \hat{z}$, where $M_0 = 1 \times 10^6 \text{A/m}$. Approximate the field at a point 10cm from the magnet along the z axis.

7 A current sheet carries current 1A/m in the \hat{x} direction. Parallel to the sheet, a wire carries current 1A in the x-direction a distance d above the sheet. Compute the force per unit length on the wire.

8 A cylindrical capacitor with inner radius a and outer radius b is filled with a dielectric with susceptibility χ_e and conductivity σ . If a voltage V_0 is established across the conductors, compute the current per unit length between the conductors.

9 A cylindrical capacitor with inner radius a and outer radius b is filled with a dielectric with susceptibility χ_e and conductivity σ . If a voltage V_0 is established across the conductors, compute the energy stored per unit length.

10 A square of wire with sides ℓ and cross-section A lies flat in the x - y plane in a uniform magnetic field that is changing as $\vec{B} = B_o \hat{z} \cos(\omega t)$. The wire has resistivity ρ . Compute the current as a function of time. Indicate the direction of the current from t = 0 to $t = \pi/2\omega$.

11 A cylindrical rod of iron ($\mu_r = 200, r = a$) partially fills a long solenoid (N', I, r = b). Compute the inductance per unit length.