PHYS 3414-Electricity and Magnetism- Test 2 - Part 1

All problems are worth 25 points. The majority of points on each problem will be awarded for doing the physics correctly; if you have correctly done the physics, but cannot carry out the mathematics, you will still receive most of the points. I write the test after we won the soccer game.

1 A flat square loop of wire with side length ℓ in in the $x-y$ plane centered at the origin. The loop carries a current I in the clockwise direction when viewed from the positive z axis. Compute the vector potential at a point a distance $R>\ell$ along the x axis.

2 A spherical capacitor is formed of two conductors of radius a and b where $a<b$. The capacitor is centered at the origin. Half the capacitor $(z<0)$ is filled with a dielectric with relative permittivity ϵ_{1} and half the capacitor $(z>0)$ with dielectric with relative permittivity ϵ_{2}.
a Compute the capacitance.
b Compute the total charge stored on the inner conductor if a potential V_{0} is established across the two conductors. Report the division of this charge between the top half, Q_{+}where $z>0$; and Q_{-} where $z<0$.

PHYS 3414-Electricity and Magnetism- Test 2 - Part 2

All problems are worth 25 points. The majority of points on each problem will be awarded for doing the physics correctly; if you have correctly done the physics, but cannot carry out the mathematics, you will still receive most of the points.

3 A circular magnet with radius $a=1 \mathrm{~cm}$ and thickness $d=1 \mathrm{~mm}$ and magnetization $1 \times 10^{5} \mathrm{~A} / \mathrm{m}$ lies in the $x-y$ plane centered at the origin.
a Calculate the magnetic field at the center of the magnet.
b Calculate the torque a magnetic field $\vec{B}=B_{0} \hat{x}$ would exert on the magnet if $B_{0}=0.2 \mathrm{~T}$.
4 The radius of a wire decreases from a to b over a distance of ℓ. A voltage V_{0} is established across the ends of the wire. The wire has resistivity ρ.
a Compute the resistance.
b Compute the electric field as a function of distance along the wire in terms of V_{0} and geometric constants.

