Homework 1

Due Thursday $1 / 21 / 2010$ - at beginning of class

Reading Assignment - Chapter 1

Griffiths' Problems

1.5

1.6
1.11
1.13
1.15
1.18
1.24
1.25

Problem E.1.1 Calculate ∇V where $V=\vec{p} \cdot \vec{r} / r^{3}$ where \vec{p} is a constant vector. Note this is the potential of a point dipole.
Problem E.1.2 Consider the vector field $\vec{E}=\gamma \hat{z} \times \vec{r}$ where γ is a constant. Sketch the field. Compute the line integral of the field around a circle of radius R in the $x-y$ plane by direct integration. Compute the same integral using Stoke's Thm.
Problem E.1.3 Consider the vector field $\vec{E}=\gamma \vec{r}$ where γ is a constant. Sketch the field. Compute the flux, $\oint \vec{E} \cdot d \vec{a}$, out of the cube $0<x<1,0<y<1$, and $0<z<1$ by direct integration. Compute the flux using the Divergence Thm. Problem E.1.4 Consider the function $f=x^{2}+y^{2}+z^{2}$. Compute the gradient in both Cartesian and spherical coordinates. Show the answers agree.

