Homework 5

Due Friday $3 / 1 / 2013$ - at beginning of class

Griffiths' 4 Problems

3.9 (Griffiths 3rd Edition 3.8)
3.10 (Griffiths 3rd Edition 3.9)
3.30 (Griffiths 3rd Edition 3.28)

Additional Problems

E.5.1 An infinite grounded conducting plane occupies the area $z<0$. A dipole is formed of two charges $\pm Q$ separated by a distance a. The dipole moment is parallel to the z axis. The center or the dipole is a distance R from the plane. Compute the force on each charge and the total force on the dipole. Is the dipole attracted or repelled from the plane?
E.5.2 A grounded conducting sphere of radius a is centered at the origin. Two charges $+q$ are at a location $\pm D \hat{x}$ along the x-axis. Compute the electric potential at the point $2 D \hat{x}$.
E.5.3 The potential on the surface of an infinite cylinder is given by $V(a, \phi)=V_{0}(\sin (\phi)+\cos (\phi))$. Find the potential at all points inside the cylinder and the field inside the cylinder.
E.5.4 Find the potential in the region where $x>0$ and $y>0$. The $y-z$ plane is held at potential V_{0} and the $x-z$ plane is grounded. Hint, look at the trivial solutions.
E.5.5 The potential of a rectangular system is independent of z. The system extends to infinity in the x direction. On the plane $y=0$ and $y=a$ the potential is zero. On the plane $x=0$, the potential is $V(0, y)=$ $V_{0} \sin ^{2}(\pi y / a)$. Compute the potential in the channel. Report the integral you would use to calculate the coefficients in the series, but you do not have to evaluate the integral.

