Homework 6

Due Friday 3/8/2013 - at beginning of class

Griffiths' 4 Problems (3rd Edition numbers are the same)

4.5	
4.10	
4.15	
4.18	
4.20	
4.21	

Additional Problems

E.6.1 A dipole formed of a +Q and -Q charge spaced a distance *a* apart has dipole moment pointing in the $+\hat{z}$ direction. The center of the dipole is located at $+R\hat{z}$ a distance *R* above a neutral dielectric slab occupying the volume z < 0 with dielectric constant κ . Compute the force the dielectric plane exerts on the dipole.

E.6.2 A point charge +Q is a distance R above a neutral dielectric slab with dielectric constant κ occupying the volume z < 0. Compute the electric field immediately above and below the dielectric surface. From the field, calculate the bound charge density at the surface.

E.6.3 A linear dielectric with dielectric constant κ occupies the volume -a < z < a. A uniform volume charge density ρ is fixed within the dielectric. Compute the electric field everywhere. Compute the polarization everywhere.