Homework 8

Due Friday 4/5/2013 - at beginning of class

Griffiths' 4 Problems

- **5.17** (Griffiths' 3rd Edition Problem 5.16)
- **5.23** (Griffiths' 3rd Edition Problem 5.22) You only need to find the potential. You do not need to take the curl to find the field.
- **5.24** (Griffiths' 3rd Edition Problem 5.23)
- 5.37(a) (Griffiths' 3rd Edition Problem 5.35)

6.1

6.3 - Work part (b) only.

Additional Problems

- **E.8.1** A non-uniform current $\vec{J} = \gamma r^2 \hat{z}$ flows in the \hat{z} direction in the region a < s < b. γ is a constant. Compute the magnetic field everywhere.
- **E.8.2** Compute the vector potential at the center of a square sheet of current $\vec{K} = K_0 \hat{y}$ where the current extends from x = -a to a and y = -a to a in the x y plane. K_0 is a constant.
- **E.8.3** A flat square loop of wire with side length ℓ in in the x-y plane centered at the origin. The loop carries a current I in the clockwise direction when viewed from the positive z axis. Compute the vector potential at a point a distance $R > \ell$ along the x axis.