Homework 9

Due Friday 4/12/2013 - at beginning of class

Griffiths' 4 Problems (3rd Edition numbers are the same)

6.8
6.12
6.15
6.17
6.18

Additional Problems

E.9.1 Compute the magnetic field in the gap $(s=0.15 \mathrm{~cm})$ in a toroidal iron ring. The radius of the ring is $R=8.1 \mathrm{~cm}$. The ring is wrapped with 100 turns carrying current $I=0.7 \mathrm{~A}$. At the operating current, the relative permeability of the ring is $\mu_{r}=100$.

E.9.2 Repeat problem E.9.1 where $1 / 10$ the circumference of the iron is replaced with a permanent magnetic material with magnetization $M=10^{5} \mathrm{~A} / \mathrm{m}$. The permanent magnet produces a field in the same direction as the field produced by the wraps of wire.
E.9.3 A manufacturer of Alnico magnets reports a residual field of 12,500 Gauss. This is the field in the center of an infinitely long magnet. Compute the magnetization \vec{M}. Our cylindrical Alnico lab magnets were about 10 cm long with radius 0.5 cm . Compare the field at the center of the flat surface of this magnet to field at the surface of a disk magnet of height 1 mm and radius 0.5 cm . You may use the finite solenoid formula. Also compute the field of the disk magnet modelling the bound current as a ring of current. Modelling the two magnets as point dipoles, compare the magnetic field at 30 cm in the direction of the moment of the two magnets.
E.9.4 A circular magnet with radius $a=1 \mathrm{~cm}$ and thickness $d=1 \mathrm{~mm}$ and magnetization $1 \times 10^{5} \mathrm{~A} / \mathrm{mz}$ lies in the $x-y$ plane centered at the origin.
a Calculate the magnetic field at the center of the magnet.
b Calculate the torque a magnetic field $\vec{B}=B_{0} \hat{x}$ would exert on the magnet if $B_{0}=0.2 \mathrm{~T}$.

