Practice Final Exam - Spring 2013

Work four of the six problems. Place the problems in the order you wish them graded. The first two problems form the first half test; the second two problems form the second half test.

Problem 4.1 A wire of length 2ℓ runs along the x-axis and is centered at the origin. The wire is thinner in the middle than at the two ends. The cross-sectional area of the wire is given by $A(x)=A_{0}\left(a^{2}+x^{2}\right)$, where A_{0} and a are constants. Make the approximation that the current density depends only on x.

Problem 4.2 The $x-y$ plane is the boundary between two regions $z>0$ and $z<0$ with different electric and magnetic fields. The fields below the plane are

$$
\vec{E}_{-}=\gamma(\hat{x}+2 \hat{y})
$$

and

$$
\vec{B}_{-}=\alpha(\hat{x}+\hat{z})
$$

The plane has a surface charge density σ and a surface current density $\vec{K}=\Gamma \hat{y} . \Gamma, \gamma$, and α are constants. Find the electric and magnetic field above the plane $(z>0)$. Note, while this problem in electro/magnetostatic, it could be altered to include time dependent terms.

Problem 4.3 A solenoid of radius b has N turns wound over ℓ distance and carries current I. The solenoid contains a hollow cylindrical iron core with relative permeability μ_{r} at the operating field. The iron core has inner radius a and outer radius b. Compute $\vec{B}, \vec{H}, \vec{M}, \vec{J}_{b}$, and \vec{K}_{b} everywhere.

Problem 4.4 A spherical system of radius a has potential $V(a, \theta)=\gamma \cos (\theta)$ at its surface. Compute the electric field inside the system.

Problem 4.5 A circular ring of conducting wire is in a region with changing magnetic field as shown below. The radius of the ring is increasing as $a(t)=a_{1} t^{2}$, where a_{1} is constant. The magnetic field is $B(t)=B_{0} t^{2}$ in the direction drawn with B_{0} constant. The conductivity of the wire is σ and it has cross-sectional area A_{w}. Compute the current flowing the the wire as a function of time and give its direction.

Problem 4.6 A spherical system is built with a free charge density $\rho(r)=\gamma r(r<a)$ embedded in a linear dielectric material of radius a with relative permittivity ϵ_{r}. Calculate the potential difference between the center of the system and the surface $\Delta V_{0 a} . \gamma$ is constant.

