## Homework 6

Due Monday $3 / 17 / 2014$ - at beginning of class

## Griffiths' 4 Problems (3rd Edition numbers are the same)

4.5
4.15
4.20
4.21

## Additional Problems

E.6.1 A dipole formed of a $+Q$ and $-Q$ charge spaced a distance $a$ apart has dipole moment pointing in the $+\hat{z}$ direction. The center of the dipole is located at $+R \hat{z}$ a distance $R$ above a neutral dielectric slab occupying the volume $z<0$ with dielectric constant $\kappa$. Compute the force the dielectric plane exerts on the dipole.
E.6.2 A point charge $+Q$ is a distance $R$ above a neutral dielectric slab with dielectric constant $\kappa$ occupying the volume $z<0$. Compute the electric field immediately above and below the dielectric surface. From the field, calculate the bound charge density at the surface.
E.6.3 A linear dielectric with dielectric constant $\kappa$ occupies the volume $-a<z<a$. A uniform volume charge density $\rho$ is fixed within the dielectric. Compute the electric field everywhere. Compute the polarization everywhere.
E.6.4 A spherical system has polarization $\vec{P}=\gamma r^{2} \hat{r}$ for radius $r<a$ and $\vec{P}=0$ for $r>a$. Find the electric field everywhere.
E.6.5 A linear dielectric slab with dielectric constant $\epsilon_{r}$ is placed between two infinite parallel planes of charge with charge density $\pm \sigma$. Find $\vec{D}, \vec{E}, \vec{P}$, and $\rho_{b}$ in the dielectric, and the bound charge density on the top and bottom surface of the dielectric.

E.6.6 A potential of $V_{0} \cos (\theta)$ is established on the inner surface of a spherical dielectric with inner radius $a$ and outer radius $b$. The dielectric constant of the material is $\epsilon_{r}$. Find the potential for $r>a$. You may report a system of equations that needs to be solved to find the coefficients of the potential functions. Actually solving these equations turns out to be quite messy. These equations should be a set of simple linear, non-differential equations.

