Electricity and Magnetism - Practice Final Exam - Spring 2014

Work four of the six problems. Place the problems in the order you wish them graded. The first two problems form the first half test; the second two problems form the second half test. If you turn in all six problems, then 75% of your score on the last two problems will be used to replace your lowest test score (for better of worse).

Problem 4.1 A metal washer, a thin metal disk with inner radius a, outer radius b, and thickness ℓ, is in the $x-y$ plane centered at the origin. The metal has conductivity $\sigma(s)=\gamma / s$ where γ is a constant. The region containing the disk also contains an electric field $\vec{E}=E_{0} \hat{\phi}$ where E_{0} is a constant. Compute the magnetic field at the origin that results from the current in the disk produced by the given electric field. You may treat the current as a surface current since the disk is thin.

Problem 4.2 The figure below shows two coils of wire with number of turns N_{1} and N_{2} wound on an iron ring with relative permeability μ_{r}, radius R, and cross-sectional area A. The iron ring has a small gap of width s which allows the mutual inductance of the two coils to be adjusted. Compute the mutual inductance of the two coils.

Problem 4.3 A thin circular disk with inner radius a and outer radius b is in the $x-y$ plane centered at the origin. The disk has a surface charge density $\sigma(s)=\gamma s^{2}$ where γ is a constant. Compute the electric potential at the origin.

Problem 4.4 A long solenoid is wound with $N=100$ turns over a distance $\ell=20 \mathrm{~cm}$. At time $t=0$, the solenoid carries a current $I_{0}=\frac{1}{4} A$. My left hand is in the solenoid adjusting, for some reason, a compass at the center of the solenoid. My wedding ring has radius of about $a=1 \mathrm{~cm}$ and cross-sectional area of about $A=1 \mathrm{~mm}^{2}$. The ring is made of gold that has resistivity $\rho=2.4 \times 10^{-8} \Omega \mathrm{~m}$. The normal of the surface bounded by the right is parallel to the axis of the solenoid. At $t=0$, the fuse in the meter that measures the current in the solenoid blows and the current in the solenoid decreases to zero as $I(t)=I_{0} e^{-t / \tau}$ where $\tau=1 \times 10^{-3} \mathrm{~S}$. What is the peak value of the current that is induced in my ring?

Problem 4.5 A rectangular channel of width a and height b occupies the region $0<x<a$ and $0<y<b$. The channel is infinite in the z direction. The $y=0, y=b$, and $x=a$ sides of the channel are grounded. The $x=0$ side has potential $V(0, y)=0$ for $y<b / 4$ and for $y>3 b / 4$. In between, $V(0, y)=V_{0}$ for $b / 4<y<3 b / 4$. Compute the potential in the channel.

Problem 4.6 A long cylindrical conductor with relative permeability μ_{r} and radius $s=a$ carries a total current I uniformly distributed over its cross section. The wire is co-axial with the z axis and carries current in the $+\hat{z}$ direction. Outside the wire $s>a$ the current density decays exponentially and is given by $\vec{J}=\frac{J_{0}}{s} e^{-s / b} \hat{z}$ where J_{0} and b are constants. Compute \vec{H} and \vec{B} everywhere, both inside and outside the wire.

