Electricity and Magnetism - Practice Final Exam 2- Spring 2014

Work four of the six problems. Place the problems in the order you wish them graded. The first two problems form the first half test; the second two problems form the second half test. If you turn in all six problems, then 75% of your score on the last two problems will be used to replace your lowest test score (for better of worse).

Problem 4.1 A copper pipe has inner radius a and outer radius b. The pipe is a length ℓ long. The conductivity of the copper increases exponentially with ℓ., $\sigma(x)=\sigma_{0} \exp (x / \ell)$. Compute the resistance of the pipe.

Problem 4.2 An infinite straight wire carries a time varying current $I(t)=I_{0} \sin (\omega t)$. A distance a from a square loop of wire with resistance R and side length ℓ. Both the infinite wire and the loop are in the plane of the page. Compute the current induced in the square loop.

Problem 4.3 A cylindrical region of space of radius a co-axial with the z axis contains a time varying electric field $\vec{E}(t)=E_{0} \sin (\omega t) \hat{z}$ where E_{0} and ω are constant. Compute the magnetic field in the region.

Problem 4.4 A ring of radius R is composed a permanent magnetic material with magnetization M_{0} and a linear magnetic material with relative permeability μ_{r}. Each occupy half the radius as drawn. Compute the magnetic field in the linear magnetic material.

Problem 4.5 A spherically symmetric system of electric charge has volume charge density $\rho=\gamma r$ for $r<a$ and $\rho=0$ for $r>a$. The region $r<a$ also contains a linear dielectric with dielectric constant κ. Compute \vec{D} and \vec{E} everywhere.

Problem 4.6 A disk of radius a lies in the $x-y$ plane. The disk has surface charge density γs where γ is a constant. Compute the electric field a distance R along the positive z axis.

