Electricity and Magnetism - Practice Final Exam 2- Spring 2014

Work four of the six problems. Place the problems in the order you wish them graded. The first two problems form the first half test; the second two problems form the second half test. If you turn in all six problems, then 75% of your score on the last two problems will be used to replace your lowest test score (for better of worse).

Problem 4.1 A copper pipe has inner radius *a* and outer radius *b*. The pipe is a length ℓ long. The conductivity of the copper increases exponentially with ℓ ., $\sigma(x) = \sigma_0 \exp(x/\ell)$. Compute the resistance of the pipe.

Problem 4.2 An infinite straight wire carries a time varying current $I(t) = I_0 \sin(\omega t)$. A distance *a* from a square loop of wire with resistance *R* and side length ℓ . Both the infinite wire and the loop are in the plane of the page. Compute the current induced in the square loop.

Problem 4.3 A cylindrical region of space of radius *a* co-axial with the *z* axis contains a time varying electric field $\vec{E}(t) = E_0 \sin(\omega t)\hat{z}$ where E_0 and ω are constant. Compute the magnetic field in the region.

Problem 4.4 A ring of radius R is composed a permanent magnetic material with magnetization M_0 and a linear magnetic material with relative permeability μ_r . Each occupy half the radius as drawn. Compute the magnetic field in the linear magnetic material.

Problem 4.5 A spherically symmetric system of electric charge has volume charge density $\rho = \gamma r$ for r < a and $\rho = 0$ for r > a. The region r < a also contains a linear dielectric with dielectric constant κ . Compute \vec{D} and \vec{E} everywhere.

Problem 4.6 A disk of radius *a* lies in the x - y plane. The disk has surface charge density γs where γ is a constant. Compute the electric field a distance *R* along the positive *z* axis.