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 Although classical information theory has revolutionized modern life, the discrete 

state of classical bits limits the computational capacities of the standard computer. Quantum 

information theory, or quantum computation, is an extension of the model for information 

theory that incorporates quantum physics and drastically alters the computational power in a 

way that allows for simultaneous calculations. Such an extension also introduces problems 

inherent in quantum physics, such as the Heisenberg uncertainty principle. This principle 

alone complicates the basic error-checking algorithms used for data channels, the way in 

which one duplicates data, and the way in which data is transmitted. 

 The classical Shannon bit, the foundation of modern computing, was the product of 

the first substantial consideration of information theory, or the theory of how information can 

be encoded and transmitted through physical channels. Developed by Claude Shannon, this 

most fundamental inquiry into information theory addressed issues such as the way in which 

information is encoded, the channels through which the data is transmitted, the maximum 

transmission rates of data, and the complications of ‘noise’ or interference on the 

communication channel. All of these issues present themselves in several levels of complexity 

within the field of quantum computation.  

 The basic unit of quantum information theory, the qubit, is a derivation of the classical 

Shannon bit. While the Shannon bit can exist in a state of 0 or 1, the qubit can be 0, 1, or in a 

superposition of those two states, i.e., it can be 0 and 1 simultaneously, with a probability 

associated with each value (Lomonaco 2009). The typical implementation models for 

quantum computation base themselves around the quantum polarization states of light, using a 
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photon as the basic building block of a bit. In this instance, a photon can have vertical 

polarization,   

! 

b  which will be the equivalent of a 1 bit for the classical theory. The photon 

can also have horizontal polarization, 

! 

"  which will be the quantum analog of a 0 bit. 

Alternatively, and this is the major departure from classical theory, the photon can be in a 

‘superposition’ of these two states, essentially being 0 and 1 at the same time. 

Mathematically, ket vectors in a Hilbert space H describe the states of a quantum system. 

(Lomonaco 2009) 

 To begin this description, one chooses an orthonormal basis from a finite-dimensional 

vector space, such as: 

! 

x
i
: i " n{ }, this allows us to represent any state of our quantum 

system as a linear combination of the basis elements, with the restriction that the norm of the 

state is of unit length. One chooses the orthonormal basis freely, up to the restriction that it 

represents a physical observable of the system that can take up to n distinct values. The linear 

combination of the basis elements is what yields the superposition states of the system. 

Rigorously, the idea of a physical observable is self-adjoint operator on a Hilbert space 

(Lomonaco 2009). Now, to construct a register of quantum bits that will allow for 

computational manipulation of the bits, we enter the realm of multilinear algebra, and 

introduce the tensor product. If we want a quantum register of 8 bits, we take the 8-fold tensor 

product of Hilbert spaces as below: 

! 
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For quantum computation, this construction is usually restricted to 2 dimensional Hilbert 

spaces, and for an arbitrary m-fold tensor product, a space of dimension 

! 

2
m  is achieved. And 

since qubits can exist in superpostional states, m-qubits can hold 

! 

2
m  values at one time, 

instead of only one of those values, which is the case with Shannon bits. This computational 
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quality has enormous benefits for algorithmic operations that require excessive computing 

power, such as modern-day cryptographic systems. 

 Modern day cryptography uses ‘computationally difficult’ problems to encode 

information. Most prominent of these problems is the factorization of large numbers. There is 

no known algorithm that can, in polynomial time on the size of the number, factor a number 

into its prime divisors. Admittedly, this is a simple problem for smaller numbers, but as 

number reach hundreds of digits, this becomes computationally unfeasible. Essentially, one is 

forced to check all prime divisors that lead up to a number, and since a classical processor can 

only perform one operation per bit at a time, the number of bit-operations becomes 

prohibitive. Quantum computation allows 8 qubits to store a total of 256 values at once. This 

also implies that performing an operation on 8 qubits allows you to perform 256 calculations 

simultaneously. This significantly reduces the memory and time capacities necessary to 

perform factorization of large numbers. Peter Shor developed an algorithm that utilizes this 

property and could theoretically perform factorization in polynomial time, this discovery 

provided the first real application of quantum computers that was otherwise impossible on 

classical computers, and created the first real push toward the construction of a working 

quantum computer (Steane, 1997). 

 Another common problem in computer science, searching algorithms, has interesting 

solutions in quantum computing utilizing the same advantages mentioned earlier. For n data 

elements stored in a random, unsorted fashion, it takes, on average, n/2 computations to 

determine if a given element is in the set. This is the best a classical computer can do. For 

quantum computers; however, the results are far faster. Since quantum bits can utilize 

superpositional states, the quantum computer can search the same data set in 

! 

n  steps, based 
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on an algorithm published by Lov Grover (Steane, 1997). This achievement is possibly 

primarily because quantum computers do not need to evaluate the information bits nearly as 

often as classical computers do. They can simply perform operations, and evaluate the final 

result. 

 The cornerstone of any computational model is the set of logic gates used. For 

classical information theory, common gates like the NOT, XOR, AND, NAND, and OR gates 

are used in integrated chips. Logic gates such as these form the foundation of modern 

computing, interpreting classical bits as yes/no values and performing Boolean logic. 

Similarly, the theory of quantum computation involves its own set of quantum logic gates, 

some of which have direct analogues to classical logic gates, and others that are entirely 

distinct. Of particular interest are the single qubit logic gates. There is only one single bit 

logic gate for Shannon bits, the NOT gate that is an involution on the set {0,1}, but there are 

numerous single qubit gates, depicted below using matrix representations and a standard qubit 

! 

" 0 + # 1 . 

The quantum NOT gate is represented as: 

! 
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With our standard vector, 

! 

" 0 + # 1 , in vector notation, 
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The X gate performs the following operation: 
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(Lomonaco, 2009) 

Now, the requirements for our quantum states specify that each vector have unit length, and 

the matrix operations that specify our quantum logic gates much preserve this unit length, 

which is equivalent to requiring that the matrix representation be a unitary matrix. Two more 
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important quantum logic gates are the Z gate and the Hadamard gate, whose matrix 

representations are given below (Chuang and Nielsen, 2001) : 

! 
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0 #1
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Now, the restriction that the matrix representation of a quantum logic gate be unitary delivers 

enormous power into the quantum computer because any unitary matrix is invertible, which 

implies that any quantum logic gates is also invertible. Most classical logic gates are not 

invertible, such as the XOR gate. That is, given the output of an XOR gate, it is impossible to 

deduce the given inputs. Another benefit of quantum logic gates is the following observation: 

the CNOT gate, depicted below, is the quantum analog of the NAND gate, that is, any 

compound quantum logic gate can be constructed from CNOT and single qubit gates.  

The CNOT gate on the amplitudes 

! 

00  

! 

01  

! 

10  and 

! 

11 : (Lomonaco, 2009) 

! 

00 " 00 ; 01 " 01 ; 10 " 11 ; 11 " 10  



Evans 6 

 

The upper portion of the photo indicates the number of possible qubit states versus a classical bit, while the 

lower portion is a schematic model of quantum computation, where single qubit (orange) and double qubit 

(green) logic gates operate on quantum information. Photo courtesy of: http://physics.aps.org/articles/v1/35 

 

However, quantum logic gates also introduce one of the foundational complications in 

quantum computing, the no-cloning theorem. In classical computation models, the duplication 

of information is simple and straightforward, you simply use a classical CNOT and an input x 

that returns two bits in the same state as x. It turns out that this is simply impossible to do with 

quantum information (Steane, 1997). In the field of quantum information theory this is known 

simply as the no-cloning theorem and is formally stated as follows: “An unknown quantum 

state cannot be cloned,” and is easily proved: 

Proof: 
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To copy a quantum state, a pair of quantum systems must have a unitary operator 

applied to them, independent of the actual states involved such that: 

! 

U " 0( ) = " " #

U $ 0( ) = $ $ for $ % "
 

Now, suppose such an operator exists and consider the state: 

! 

" =
# + $

2
%

U " 0( ) =
# # + $ $

2
& " "

 

And the supposed method of cloning fails. (Lomonaco, 2009) 

 When quantum mechanics were first proposed, Einstein, Podolski, and Rosen 

presented what is now known as the EPR paradox. The EPR paradox concerns the phenomena 

of quantum entanglement, where two particles that are non-interacting and separated by space 

have qualities that are dependent on each other (Bouwmeester, Ekert, Zeilinger, 2000). This 

paradox initially appeared to present a problem with non-relativistic quantum mechanics, but 

together with the no-cloning theorem, the EPR paradox solidifies the theory of quantum 

information theory, since without the no-cloning theorem, the EPR paradox would allow for 

communication past the speed of light (Steane, 1997). In another paradigm, the no-cloning 

theorem produces an excellent result. The primary problem with the no-cloning theorem is 

that one cannot read, or measure, quantum information without altering its superposition in 

the process. This similarly implies, that on quantum information channels, the presence of an 

eavesdropper would create an excessive level of error in the quantum channel, and revealing 

themselves. This is not the case with classical information channels, which almost exclusively 
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allow individuals to eavesdrop on the data being transmitted without alerting the users of the 

information channel (Hayden, 2009).  

 Nonetheless, quantum computation has more issues to deal with. Classical information 

theory understood the problem of transmitting data along noisy channels, where interference 

corrupts data transmission. Since all channels will have some noise, finding a way to 

counteract random and predictable noise was necessary. In the classical world, the field of 

coding theory deals with propagation along noisy channels and error-correction. While 

contemporary algorithms are more sophisticated, they typically have foundations in Hamming 

coding theory. Simplified Hamming coding theory is fairly elementary in that it simply takes 

the information a bit at a time, makes several copies of each bit, and then sends all of those 

copied bits together. At the receiving end, the computer reads a string of bits, and selects the 

most frequent one. In this way, random error is corrected, since the probability of most of the 

bits being altered is (generally) lower than the probability that most of the bits arrived 

uncorrupted (Gottesman, 2009). But, due to the no-cloning theorem and the Heisenberg 

uncertainty principle, even this most simple of error correcting codes is useless, since the data 

can neither be interpreted to see which data has been corrupted, nor can it be duplicated in the 

first place. 

 Error in quantum channels comes primarily from three sources. The bit-flip error, the 

phase change error, decoherence, and accidental rotation: 

Bit Flip X:

! 

X 0 = 1 , X 1 = 0  

Phase change Z: 

! 

Z 0 = 0 , Z 1 = "1  

Decoherence is the total disruption of the quantum state, and rotations are simply rotations. 

(Gottesman, 2009) 



Evans 9 

The solution to this fundamental problem lies in quantum logic gates. One can use quantum 

logic gates to measure not the data, but the difference in the data. In other words, if you send 

several versions of the same bit, the individual or device receiving that bit can simply use a 

quantum circuit to deduce which of the bits are different from each other, without disrupting 

the superpositions. This preserves the data that is encoded in the bit, and still allows one to 

measure error and correct it. This method also circumvents the no-cloning theorem. Instead of 

copying the bits involved, we simply replicate the computational basis, instead of copying the 

entire bit. In formulae: 

! 

" 0 + # 1 =" 000 + # 111 $ 3 " 0 + # 1( )  (Gottesman, 2009) 

This is a very simplistic error-correcting code that only works only on channels with minimal 

noise levels, and only corrects errors in which a single bit of data accidentally becomes 

interchanged. Combining this code with the Hadamaard logic gate mentioned previously 

allows one to simultaneously fix two of the major sources of error: bit-flip and phase-change 

errors. Correcting other sources of error becomes more complicated, but it is worth noting that 

theoretically feasible codes do exist which mitigate the noisy-channel problem (Gottesman, 

2009).  

 The issue of outside interference is a critical problem to the actual realization of 

quantum computers. (Steane, 1996) This is particularly problematic due to the nature of 

quantum mechanics. Classical computers can operate with some high levels of interference, 

since the distinction between the discrete states of classical bits is conducive to higher levels 

of interference, while the more continuous nature of quantum states is far more sensitive 

means that even small fluctuations in the quantum state produce large changes in the actual 

value. Quantum noise affects all levels of quantum computation from implementing logic 
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gates to transmission of information over distances. The accuracy, or fidelity, of quantum 

information decreases as the distance over which data transmission occurs is increased 

(Steane 1997). This is due to more prolonged exposure to noise and interference, which 

provides more opportunities for the superposition of the qubits to be altered, resulting in 

decoherence. The concepts of entanglement and quantum teleportation are of critical 

importance to transmission of quantum information (Sloqvist 2008). The National Institutes 

of Standards and Technology has used an ‘ion trap,’ pictured below, along with laser 

manipulations to transfer quantum information from one atom to another using these 

principles. 

 

Photo from: http://www.nist.gov/public_affairs/releases/teleportation.htm 

A schematic of a large network of these ‘ion traps’ that has been proposed is also given 

below: 
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Photo from: Nature, volume 417, 13 June 2002. P. 709 

This diagram, which uses small ion-trap quantum registers uses Coulomb interaction between 

ions to transfer quantum information, and make the realization of quantum logic gates a 

reality. This concept, unlike photon-coupling, has been experimentally tested (as discussed 

above) (Klelpinskl, Monroe, Wineland; 2002). 

 The field of quantum computation is highly dependent on discoveries and innovations 

in quantum physics, and the development of technology that will allow the isolation of 

quantum computers from outside interference, a technology that will be far more complicated 

than the steel shells that provide shielding for modern computers. While advances in the 

physics of photons appears to provide promising results for quantum transmission channels, 

many physicists remain pessimistic concerning the construction of quantum computers 

(Cambride, Center for Quantum Computation). Steane offers a good synopsis of ion-traps and 

nuclear magnetic resonance that constitute the primary research areas in quantum computers 

(Steane, 1997). The potential benefits of quantum computers will provide benefits across 
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society, from intelligence agencies interested in cryptanalysis, to mathematicians and 

engineers facing computationally difficult problems, and to organizations wishing to 

capitalize on the security benefits of quantum information transmission. 
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