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DAWN OF SUPERCONDUCTORS 

Dutch physicist Heike Kamerlingh Onnes was interested in how materials behaved when 

cooled to near absolute zero temperatures. On July 10, 1908, Onnes successfully operated the 

first liquefier of helium, which exhibited a boiling point of approximately 4.2K (Doss, 1989).  

Onnes was interested in how materials behaved when cooled to nearly absolute zero temperature.  

Kamerlingh Onnes conducted experiments with conductors and liquid helium, believing that the 

electrical resistance would steadily decrease alongside the decrease of temperature.  The 

experiments validated Kamerlingh Onnes’s hypothesis.  His production of extreme cryogenic 

temperatures led to his discovery of superconductors.  Superconductors are materials that have 

no resistance to the flow of electrons and remain to this day one of the last frontiers of scientific 

discovery.   The reasons for this are that the limits of superconductivity have not yet been 

reached, but also the theories that attempt to explain superconductor behavior are incomplete.  

Kamerlingh Onnes immediately appreciated that his new discovery potential had important 

technological implications centered in particular on the production of high magnetic fields.  It is 

well known that passage of an electrical current gives rise to a magnetic field to produce an 

electromagnet.  The disadvantage, however, of using normal metals is that such materials have a 

finite electrical resistance and a passage of large currents would burn out the material.  

Kamerlingh Onnes hypothesized that a superconductor can deliver a high current with zero 

electrical resistance and hence, no joule heating.  Joule heating is the process by which the 

passage of an electric current through a conductor releases heat.  Joule heating is caused by 

interactions between the moving particles that form the current and the ions that make up the 

body of the conductor. Charged particles in an electric circuit are accelerated by an electric field 

but give up some of their kinetic energy each time they collide with an ion. The increase in the 



kinetic energy of the ions manifests itself as heat and a rise in the temperature of the conductor.  

However, Kamerlingh Onnes observed that passage of a large current produced a magnetic field 

which destroyed superconductivity.  The superconducting electromagnets ceased to be 

superconducting in magnetic fields which exceeded a few hundredths of a Tesla.  There is a 

limit, known as the critical current density, to the amount of current that can be carried. 

THE MEISSNER EFFECT 

 In 1933, Walter Meissner and Robert Ochsenfeld discovered that magnetic flux was not 

only excluded, but actually expelled from superconductors.  This indicates that superconductivity 

is a magnetic phenomenon.  Prior to the Meissner-Oscsenfeld discovery, it had been wrongly 

assumed that the fundamental property of superconductors was zero resistance; magnetic 

properties were considered to be the secondary effect (Dahl, 1986).  By Faraday’s Law of 

electromagnetism, when a magnet is moved towards a superconducting sample, a current is 

induced on the surface layer of the conductor.  This current in turn generates a magnetic field, 

which is exactly equal and opposite in sense to that of the magnet.  This is the principle on which 

the electric generator operates. But, in a superconductor the induced currents exactly mirror the 

field that would have otherwise penetrated the superconducting material - causing the magnet to 

be repulsed. This phenomenon is known as strong diamagnetism and is today often referred to as 

the “Meissner effect.” The Meissner effect is so strong that a magnet can actually be levitated 

over a superconductive material.  Since diamagnetism is a measure of the ability of a material to 

shield its interior from an applied magnetic field, the complete exclusion of flux means that a 

superconductor is a perfect diamagnet.  Perfect diamagnetism, in addition to zero resistivity, is a 

fundamental and equally basic property of the superconducting state.   



According to Maxwell’s induction equation, the field in the superconductor would behave 

according to: 

∇ × 𝐸 = −
𝜕𝐵
𝜕𝑡

 

However, infinite conductivity would require that E = 0, which would lead to: 

𝜕𝐵
𝜕𝑡

= 0 

This is equivalent to stating that the magnetic field induction inside the superconductor could not 

change; that is, any magnetic field present would be trapped when the material became perfectly 

conductive.  The field that is exerted by a superconductor does not change with time and neither 

is the induced current.  Therefore, conductivity could be seen as infinite.  However, the infinite 

conductivity model is not sufficient enough to explain the Meissner effect and applying the 

relevant electromagnetic equations derived by James Maxwell requires that the magnetic flux 

inside a completely superconducting body cannot change and this in turn would imply that any 

magnetic flux present inside the superconductor before it is cooled into the superconducting state 

would remain frozen in it.  Instead, its explanation is better understood as a quantum-mechanical 

phenomenon as proposed by F. London (London, 1950). 

THE LONDON BROTHERS 

 The brothers Fritz and Heinz London carried out a theoretical analysis of a 

superconductor in a magnetic field.  Heinz London realized that alternating current must 

penetrate a short distance into the superconducting metal, and derived the correct formula for this 

depth, now known as the penetration depth, in which there is some penetration of flux.  Magnetic 

flux near the surface decays exponentially inwards.  The penetration depth is determined by the 



superfluid density which is an important quantity which determines the critical temperature in 

high-temperature superconductors. If some superconductors have some node in their energy gap, 

the penetration depth at 0 K depends on magnetic field because superfluid density is changed by 

magnetic field and vice versa (Doss, 1989).  Fritz London correctly predicted that, at sufficiently 

high frequencies, the superconducting electrons would not shield their normal counterparts, and 

Joule heating would occur.  The total current flowing in the superconductor is simply the sum of 

the normal and superconducting components: 

𝑱 = 𝑱𝒔 + 𝑱𝒏 

The normal electron current obeys Ohm’s law, that is, 

𝑱𝒏 = 𝝈𝑬 

Where 𝜎 is conventional temperature-dependent electrical conductivity (London, 1950).  If one 

considers an electron with mass ‘m’ and charge ‘q’ in an applied electric field, E, the force 

relationship is: 

𝑭 = 𝒎
𝒅𝑽
𝒅𝒕 = 𝒒𝑬 

The current density, J, is 𝑛𝑞𝑉 where ‘n’ is the density of electrons so that 

𝒅𝑽
𝑑𝑡 =

1
𝑛𝑞 �

𝑑𝑱
𝑑𝑡� =

𝑞
𝑚𝑬 

and  



𝑚
𝑛𝑞

𝑑𝑱
𝑑𝑡 = 𝑞𝑬 

so that 

𝑑𝑱
𝑑𝑡 = �

𝑛𝑞2

𝑚 �𝑬 = �
1
𝛬�𝑬 

Fritz London, using his brother’s results, came to the conclusion that superconductivity required 

a new relationship between the superconducting current flow and the magnetic field.  From the 

above development 

𝛬 =
𝑚
𝑛𝑠𝑞2

= 4𝜋𝝀 

Where ‘m’ is the mass of the superconducting charge carrier (fancy term for electron), 𝑛𝑠 is the 

electron density, and 𝝀 is the penetration depth of superconductors.  The London equation may 

be rewritten: 

𝑬 = 4𝜋𝜆2
𝜕𝑱𝑠
𝑑𝑡  

This equation replaces Ohm’s law for superconductors.  When the current density 𝑱𝑠  is not 

changing with time, the electric field is zero.  Since static supercurrents can flow with a zero 

electric field, the expression properly describes the superconductive state (London, 1950). 

BCS THEORY 

During the period from 1930 to 1950, a considerable effort was expended by theorists in 

their attempts to understand the mechanism of superconductivity, and a variety of talented 



individuals attempted to explain the strange behavior with the quantum mechanical models.  

Superconductivity involves the interactions between enormous numbers of electrons.  American 

physicists John Bardeen, Leon Cooper, and John Schrieffer worked on a microscopic theory of 

superconductivity based on a condensation of electron pairs into “Cooper Pairs” (Ginzburg, 

1991).  Electron-pairing was the premise of this theory which sought to satisfy the Pauli 

Exclusion Principle.  The theory asserts that, as electrons pass through a crystal lattice, the lattice 

deforms inward towards the electrons generating sound packets known as "phonons". These 

phonons produce a trough of positive charge in the area of deformation that assists subsequent 

electrons in passing through the same region. This is analogous to rolling a bowling ball up the 

middle of a bed. 2 people, one lying on each side of the bed, will tend to roll toward the center of 

the bed, once the ball has created a depression in the mattress.  And, a 2nd bowling ball, placed 

at the foot of the bed, will now, quite easily, roll toward the middle. 

Below the critical temperature, pairing of electrons close to the surface is the more stable 

configuration in the superconducting state and reduces the total energy of the system.  This is 

why pairing takes place.  An electron pair does not behave like a point particle but instead 

influences the other Cooper pairs around it.  The spheres of influence of the pairs overlap 

extensively.  The electrons are continually exchanging partners with each other; that is the same 

as saying that the pairs interact with each other.  A superconductor can then be visualized as a 

giant quantum state in which electrons are in a condensed state that has more order and is lower 

in energy than that of the electrons in a normal metal.  BCS theory proposes that the formation of 

the superconducting state only relies on the electrons near the surface.   

 



GENERAL SCIENCE 

The electrons in an atom produce magnetism.  Although the magnet as a whole may be 

stationary, the magnet is composed of atoms whose electrons are in constant motion.  Two kinds 

of electron motion contribute to magnetism: their spinning motion and their orbital motion 

(Stewart, 2011).  Electrons spin about their own axes like tops.  A spinning electron also 

revolves about the atomic nucleus which is charge in motion.  So every electron is a tiny 

electromagnet.  Hund’s rule states that the lowest-energy electron configuration of an atom is the 

configuration with the maximum number of unpaired electrons in degenerate orbitals, all having 

the same spin. A pair of electrons spinning in the same direction makes up a stronger 

electromagnet.  Conversely, a pair of electrons spinning in opposite directions, however, works 

against each other. Their magnetic fields cancel.  This is in accordance with Pauli’s exclusion 

principle which states that no two electrons in an atom can have the same set of four quantum 

numbers (Gilbert, 2009).  This is why most substances are not magnets.   

It is easy to establish an electric current in metals because one or more of the electrons in 

the outer shell of the atom in a metal are not anchored to the nuclei of that particular atom and 

can move freely within the lattice structure of the metal atom.   This creates a “sea” of charge 

carrying electrons.  This is called the “Free Electron Theory of Metals” (Ford, 2005).  Such 

materials are called conductors.  The electrons in metals make for good conductors due to their 

adjacent state in energy to empty states: application of an electric field causes these electrons to 

be accelerated into an unoccupied state and conduct current.  At temperatures near absolute zero, 

certain metals acquire infinite conductivity (zero resistance to the flow of charge). These are 

superconductors (Hewitt, 1998).  Because superconductors have no electrical resistance, 

electrons can travel through them freely and they can carry large amounts of electrical current for 



long periods of time without losing energy as heat.  Once an electric current is established in a 

superconductor, the electrons flow indefinitely. With no electrical resistance, current passes 

through a superconductor without losing energy.  Superconductors expel magnetic field, and 

hence repel magnets.  This repulsion can be stronger than gravity, which leads to levitation.  

Diamagnetism is the property of an object whenever an induced dipole is opposite the direction 

of the magnetic field.  The opposition to the external field causes a repulsive effect (Stewart, 

2010).   

Helium has a critical temperature measured at 3K, which is very close to absolute zero.  

The reason why helium is so difficult to liquefy is due to the weakness of the interaction between 

its atoms, which reflects its inert nature as a noble gas. Helium has two protons and two neutrons 

in its nucleus around which orbit two electrons.  A very weak interaction between helium atoms 

takes place via the van der Waals interaction and it is only at very low temperatures that this 

interaction is sufficiently strong enough to allow helium to condense into a liquid.  Liquid helium 

changes its behavior at a temperature of around 2.2K.  Above this temperature, liquid helium is 

violently agitating while below, it suddenly becomes quiescent (Ford, 2005).  This change marks 

the transition of helium into a superfluid state.  As a superfluid, helium behaves like a liquid but 

does not possess viscosity and is capable of infinite thermal conductivity.  There are striking 

analogies between superfluidity in liquid helium and superconductivity; the former is a 

frictionless flow of atoms and the other is a frictionless flow of electrons. 

BUILDING THE SUPERCONDUCTOR 

 The formula used for this project was taken from an article in the Journal of the 

American Ceramic Society titled “Rapid Method for the Preparation of 1-2-3 superconductor.”  

The key ingredient in preparing superconductors is the rare earth metal that is used in synthesis.  



Lanthanum, Bismuth, Thallium, Niobium and Yttrium are all materials that have a high critical 

temperature and are what keeps the superconductor intact as the raw materials undergo 

calcination—the process of ‘baking’ a superconductor in a high temperature oven.  Rare earth 

elements are typically very expensive because any known quantity of them on Earth is not very 

concentrated and they are not commercially exploitable.  This makes the rare earth element the 

limiting reactant in a high temperature superconductor, not because of stoichiometry but cost. 

 The materials used in the superconductor that ties into this paper are Yttrium Oxide, 

Barium Carbonate, and Copper (II) Oxide.  Yttrium is purchased as Yttrium Oxide because of 

the toxicity of pure Yttrium.  Not only is Yttrium Oxide air-stable, the oxygen in the compound 

plays a crucial role in the annealing process of superconductors (more on this later).   

Combining the ingredients and balancing the equation yields: 

𝑌2𝑂3 + 4 𝐵𝑎𝐶𝑂3 + 6 𝐶𝑢𝑂 ↔ 2 𝑌𝐵𝑎2𝐶𝑢3𝑂7 + 4 𝐶𝑂2 

The molar masses of the compounds and elements: 

 Molar masses (g/mol) 
Yttrium 88.906 
Oxygen 15.999 
Barium 137.33 
Carbon 12.011 
Copper 63.546 
Copper (II) Oxide 79.545 
Barium Carbonate 197.338 
Yttrium Oxide 225.809 

(Table 1: Molar masses pulled from the periodic table of elements (Gilbert, 2009)) 

If 30 grams of Yttrium Oxide are used, 104.86 grams of Barium Carbonate will be necessary for 

this reaction: 



30𝑔 𝑌2𝑂3 ×
1 𝑚𝑜𝑙

225.809 𝑔 ×
4 𝑚𝑜𝑙 𝐵𝑎𝐶𝑂3

1 𝑚𝑜𝑙 𝑌2𝑂3
×

197.338 𝑔𝑟𝑎𝑚𝑠
1 𝑚𝑜𝑙 = 104.86𝑔 

If 30 grams of Yttrium Oxide are used, 63.40 grams of Copper (II) Oxide are necessary for this 

reaction: 

30𝑔 𝑌2𝑂3 ×
1 𝑚𝑜𝑙

225.809𝑔 ×
6 𝑚𝑜𝑙 𝐶𝑢𝑂
1 𝑚𝑜𝑙 𝑌2𝑂3

×
79.545 𝑔

1 𝑚𝑜𝑙 = 63.40 𝑔 

The ratio in this stoichiometry indicates that Yttrium-Barium-Copper-Oxide (YBCO) is a 1-2-3 

high temperature superconductor.  Since the stoichiometry holds true for YBCO, the ratios of the 

compounds used can be reduced to 10 grams of Yttrium Oxide, 20 grams of Copper (II) Oxide, 

30 grams of Barium Carbonate.   

The three compounds must be ground together with a mortar and pestle to create a powder 

mixture to allow the chemical process to take place.  This mixture should ideally be heated 

between 925 to 1030 degrees Celsius for up to 18 to 24 hours.  This first treatment may be done 

in a crucible or evaporating dish made of alumina or laboratory porcelain.  The result of the first 

firing is a porous black or very dark gray lump.  The coloration should be fairly even.  An 

uneven green coloration indicates that the powders are not thoroughly mixed. 

After the initial calcinations, the superconductor mixture can be reground to allow for the oxygen 

annealing phase of the procedure.  The introduction of oxygen in this phase is what gives a 

superconductor its properties.  A slow and steady oxygen flow must be present at all times 

during the annealing phase.  A final temperature of 925 to 950 degrees Celsius for duration of 18 

to 24 hours is recommended; temperatures above 1000 degrees Celsius deteriorate the 

superconductor structure and will make the material harder to regrind.  After this period, a steady 



cooling process can take place.  A word of caution! The cooling of the oven should be no more 

than a 100 degree per hour change while under constant oxygen flow.  This ensures that as the 

superconductor cools, oxygen can still anneal to the YBCO.  If, after a run through the oven, 

there is some green coloration in the superconductor, it is important to take the time and care in 

regrinding and mixing the material before starting on the next firing, otherwise, the same green 

coloration will reappear and another 24-plus hour will be spent heating the mixture and waiting 

for the cool down. 

A word of caution!  When working with Yttrium Oxide and Barium Carbonate, extreme caution 

and safe lab procedures must be exercised at all times.  Safety goggles, vinyl gloves, 

surgeon/dust masks, lab coats and a ventilation hood must be readily accessible while working 

on any phase of the superconductor.  Potential damage to the lab and serious personal injury may 

occur if the proper procedure is not practiced (attached to this paper are the MSDS for Yttrium 

Oxide, Barium Carbonate, and Copper (II) Oxide). 

OXYGENATION 

 Oxygen stoichiometry is particularly important in determining the 1-2-3 superconductor’s 

characteristics (or whether there are any superconducting phenomena to measure).  The 

molecular structure of YBCO is typically either orthorhombic or tetragonal, depending on the 

oxygen stoichiometry (Mensah, 1992). 

𝑌𝐵𝑎2𝐶𝑢3𝑂7−𝛿 

For values of 𝛿 less than ~.6, YBCO is orthorhombic, but when that value increases beyond ~.6, 

a transition to a tetragonal structure occurs.  The tetragonal state, is not superconducting.  As 𝛿 

approaches 1.0, YBCO becomes a semiconductor at low temperatures (Mensah, 1992). 



In YBCO, oxygen forms a Cu-O-Cu-O chain which is what is responsible for the 

superconductivity and generally speaking; increasing oxygen content of a superconductor 

increases the critical temperature substantially.  As the superconductor is annealing, it must be 

under an oxygen rich atmosphere; not only does this create more Cu-O-Cu-O chains, but it also 

helps establish a reaction equilibrium in the superconductor. 

 

(Figure 1: structure of YBCO before and after the oxygen doping 
(http://www.fusione.enea.it/SUPERCOND/ybco.html.en) 
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