gives directly

$$\mathbf{a} = (-b\omega_2^2 \sin^2\theta - b\omega_1^2)\mathbf{e}_r - b\omega_2^2 \sin\theta \cos\theta \,\mathbf{e}_\theta + 2b\omega_1\omega_2 \cos\theta \,\mathbf{e}_\phi$$

The point at the top has coordinate $\theta = 0$, so at that point

$$\mathbf{a} = -b\omega_1^3 \mathbf{e}_r + 2b\omega_1\omega_2 \mathbf{e}_{\phi}$$

The first term on the right is the centripetal acceleration, and the last term is a transverse acceleration normal to the plane of the wheel.

PROBLEMS

- 1.1 Given the two vectors $\mathbf{A} = \mathbf{i} + \mathbf{j}$ and $\mathbf{B} = \mathbf{j} + \mathbf{k}$, find the following:
 - (a) $\mathbf{A} + \mathbf{B}$ and $|\mathbf{A} + \mathbf{B}|$
 - **(b)** 3A 2B
 - (c) $\mathbf{A} \cdot \mathbf{B}$
 - (d) $\mathbf{A} \times \mathbf{B}$ and $|\mathbf{A} \times \mathbf{B}|$
- 1.2 Given the three vectors $\mathbf{A} = 2\mathbf{i} + \mathbf{j}$, $\mathbf{B} = \mathbf{i} + \mathbf{k}$, and $\mathbf{C} = 4\mathbf{j}$, find the following:
 - (a) $A \cdot (B + C)$ and $(A + B) \cdot C$
 - (b) $\mathbf{A} \cdot : \mathbf{B} \times \mathbf{C} : \text{ and } \mathbf{A} \times \mathbf{B} : \cdot \mathbf{C}$
 - (e) $\mathbf{A} \times {}_{\mathbb{R}} \mathbf{B} \times \mathbf{C}$ and $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$
- 1.3 Find the angle between the vectors $\mathbf{A} = a\mathbf{i} + 2a\mathbf{j}$ and $\mathbf{B} = a\mathbf{i} + 2a\mathbf{j} + 3a\mathbf{k}$. *Note:* These two vectors define a face diagonal and a body diagonal of a rectangular block of sides a, 2a, and 3a.)
- 1.4 Consider a cube whose edges are each of unit length. One corner coincides with the origin of an *Oxyz* Cartesian coordinate system. Three of the cube's edges extend from the origin along the positive direction of each coordinate axis. Find the vector that begins at the origin and extends
 - (a) along a major diagonal of the cube:
 - (\mathbf{b}) along the diagonal of the lower face of the cube.
 - (c) Calling these vectors \mathbf{A} and \mathbf{B} , find $\mathbf{C} = \mathbf{A} \times \mathbf{B}$.
 - (d) Find the angle between **A** and **B**.
- 1.5 Assume that two vectors **A** and **B** are known. Let **C** be an unknown vector such that $\mathbf{A} \cdot \mathbf{C} = u$ is a known quantity and $\mathbf{A} \times \mathbf{C} = \mathbf{B}$. Find **C** in terms of **A**, **B**, u, and the magnitude of **A**.
- **1.6** Given the time-varying vector

$$\mathbf{A} = \mathbf{i}\alpha t + \mathbf{j}\beta t^2 + \mathbf{k}\gamma t^3$$

where α , β , and γ are constants, find the first and second time derivatives $d\mathbf{A}/dt$ and $d^2\mathbf{A}/dt^2$.

For what values or values of q is the vector $\mathbf{A} = \mathbf{i}q + 3\mathbf{j} + \mathbf{k}$ perpendicular to the vector $\mathbf{B} = \mathbf{i}q + q\mathbf{j} + 2\mathbf{k}$?

Give an algebraic proof and a geometric proof of the following relations.

$$|\mathbf{A} + \mathbf{B}| \le |\mathbf{A}| + |\mathbf{B}|$$
$$|\mathbf{A} \cdot \mathbf{B}| \le |\mathbf{A}| |\mathbf{B}|$$

- 1.9 Prove the vector identity $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$.
- Two vectors ${\bf A}$ and ${\bf B}$ represent concurrent sides of a parallelogram. Show that the area of the parallelogram is equal to $|\mathbf{A}\times\mathbf{B}|$.
- Show that $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$ is not equal to $\mathbf{B} \cdot (\mathbf{A} \times \mathbf{C})$.
- 1.12 Three vectors **A**, **B**, and **C** represent three concurrent edges of a parallelepiped. Show that the volume of the parallelepiped is equal to $|\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})|$.
- Verify the transformation matrix for a rotation about the z-axis through an angle ϕ fol-1.13 lowed by a rotation about the y'-axis through an angle θ , as given in Example 1.8.2.
- Express the vector $2\mathbf{i} + 3\mathbf{j} \mathbf{k}$ in the primed triad $\mathbf{i'j'k'}$ in which the x'y'-axes are 1.14 rotated about the z-axis (which coincides with the z'-axis) through an angle of 30°.
- Consider two Cartesian coordinate systems Oxyz and Ox'y'z' that initially coincide. 1.15The Ox'y'z' undergoes three successive counterclockwise 45° rotations about the following axes: first, about the fixed z-axis; second, about its own x'-axis (which has now been rotated); finally, about its own z'-axis (which has also been rotated). Find the components of a unit vector ${\bf X}$ in the Oxyz coordinate system that points along the direction of the x'-axis in the rotated Ox'y'z' system. (Hint: It would be useful to find three transformation matrices that depict each of the above rotations. The resulting transformation matrix is simply their product.)
- 1.16 A racing car moves on a circle of constant radius b. If the speed of the car varies with time t according to the equation v = ct, where c is a positive constant, show that the angle between the velocity vector and the acceleration vector is 45° at time $t=\sqrt{b/c}$. (Hint: At this time the tangential and normal components of the acceleration are equal in magnitude.)
- A small ball is fastened to a long rubber band and twirled around in such a way that the ball moves in an elliptical path given by the equation

$$\mathbf{r}(t) = \mathbf{i}b \cos \omega t + \mathbf{j}2b \sin \omega t$$

where b and ω are constants. Find the speed of the ball as a function of t. In particular, find v at t=0 and at $t=\pi/2\omega$, at which times the ball is, respectively, at its minimum and maximum distances from the origin.

A buzzing fly moves in a helical path given by the equation

$$\mathbf{r}(t) = \mathbf{i}b \sin \omega t + \mathbf{j}b \cos \omega t + \mathbf{k}ct^2$$

Show that the magnitude of the acceleration of the fly is constant, provided $b,\,\omega,$ and c

A bee goes out from its hive in a spiral path given in plane polar coordinates by

$$r = be^{kt}$$
 $\theta = ct$

where $b,\,k,\,$ and c are positive constants. Show that the angle between the velocity vector and the acceleration vector remains constant as the bee moves outward. (Hint: Find

- 1.20 Work Problem 1.18 using cylindrical coordinates where $R=b, \ \phi=\omega t, \ {\rm and} \ z=ct^2$.
- 1.21 The position of a particle as a function of time is given by

$$\mathbf{r}(t) = \mathbf{i}(1 - e^{-kt}) + \mathbf{i}e^{kt}$$

1 transverse

10

Note: block

ith the nd from that be-

h that id the

It and

the

where *k* is a positive constant. Find the velocity and acceleration of the particle. Sketch its trajectory.

1.22 An ant crawls on the surface of a ball of radius b in such a manner that the ant's motion is given in spherical coordinates by the equations

$$r = b$$
 $\phi = \omega t$ $\theta = \frac{\pi}{2} \left[1 + \frac{1}{4} \cos(4\omega t) \right]$

Find the speed of the ant as a function of the time *t*. What sort of path is represented by the above equations?

- 1.23 Prove that $\mathbf{v} \cdot \mathbf{a} = v\dot{v}$ and, hence, that for a moving particle \mathbf{v} and \mathbf{a} are perpendicular to each other if the speed v is constant. (Hint: Differentiate both sides of the equation $\mathbf{v} \cdot \mathbf{v} = v^2$ with respect to t. Note, \dot{v} is not the same as $|\mathbf{a}|$. It is the magnitude of the acceleration of the particle along its instantaneous direction of motion.)
- 1.24 Prove that

$$\frac{d}{dt}[\mathbf{r} \cdot (\mathbf{v} \times \mathbf{a})] = \mathbf{r} \cdot (\mathbf{v} \times \dot{\mathbf{a}})$$

1.25 Show that the tangential component of the acceleration of a moving particle is given by the expression

$$a_{\tau} = \frac{\mathbf{v} \cdot \mathbf{a}}{v}$$

and the normal component is therefore

$$a_n = (a^2 - a_{\tau}^2)^{1/2} = \left[a^2 - \frac{(\mathbf{v} \cdot \mathbf{a})^2}{v^2}\right]^{1/2}$$

- **1.26** Use the above result to find the tangential and normal components of the acceleration as functions of time in Problems 1.18 and 1.19.
- 1.27 Prove that $|\mathbf{v} \times \mathbf{a}| = v^3/\rho$, where ρ is the radius of curvature of the path of a moving particle.
- A wheel of radius b rolls along the ground with constant forward acceleration a_0 . Show that, at any given instant, the magnitude of the acceleration of any point on the wheel is $(a_0^2 + v^4/b^2)^{1/2}$ relative to the center of the wheel and is also $a_0[2 + 2\cos\theta + v^4/a_0^2b^2 (2v^2/a_0b)\sin\theta]^{1/2}$ relative to the ground. Here v is the instantaneous forward speed, and θ defines the location of the point on the wheel, measured forward from the highest point. Which point has the greatest acceleration relative to the ground?

Problem 1.5 -
$$\vec{A}$$
, \vec{B} known. $\vec{A} \cdot \vec{C} = U$ where U is known. $\vec{A} \times C = \vec{B}$

<u>Sln</u>

$$\vec{B} \times (\vec{A} \times \vec{C}) = \vec{B} \times \vec{B} = 0$$

$$= (\vec{B} \times \vec{A}) \times \vec{C} = -(\vec{A} \times \vec{B}) \times \vec{C}$$

$$\vec{A} \times (\vec{B} \times \vec{C}) = 0$$

Using CAB role

$$\vec{C} = \frac{\vec{B}(\vec{A} \cdot \vec{C})}{\vec{A} \cdot \vec{B}} = \frac{\vec{B}(\vec{A} \cdot \vec{C})}{\vec{A} \cdot \vec{B}}$$

$$A = \hat{i}\alpha t + \hat{j}Bt^2 + \hat{k}rt^3$$

$$\frac{dA}{dt} = \uparrow x + \hat{j}(ZBt) + \hat{k}(3yt^2)$$

$$\frac{dA^2}{dt} = \hat{j}(2B) + \hat{k}(Bt)$$

Problem 1.7
$$\overrightarrow{A} = \overrightarrow{1}q + 3\overrightarrow{1} + \widehat{k}$$

$$\vec{A} \perp \vec{B} = 0$$

$$\vec{A} \cdot \vec{B} = q^2 - 3q + 2 = 0$$

$$(q-1)(q-2)=0$$

Algebraically
$$|\vec{A} + \vec{B}|^2 = (\vec{A} + \vec{B}) \cdot (\vec{A} \cdot \vec{B})$$

$$= A^2 + B^2 + 2\vec{A} \cdot \vec{R}$$

because ZA·B=ZIAIIBIcosA & ZIAIBI

Geometrically

The length $\overrightarrow{A} + \overrightarrow{B}$ is at most the longest $\overrightarrow{A} + \overrightarrow{B}$ can be is

$$\xrightarrow{\vec{A}}$$

and the length of the combination is 17/18/

Algebroically

Geometrically

Prove [A.B] \(|\bar{A}|\)

The dot product projects A in the direction M. The projection cannot be longer than A itself.

$$A \times (\overrightarrow{B} \times \overrightarrow{C}) =$$

$$\overrightarrow{B} \times \overrightarrow{C} = \begin{pmatrix} i & j & K \\ B_{x} & B_{y} & B_{z} \\ C_{x} & C_{y} & C_{z} \end{pmatrix}$$

$$= \begin{pmatrix} B_{y} C_{z} - B_{z} C_{x} \end{pmatrix} \uparrow$$

$$- \begin{pmatrix} B_{x} C_{z} - B_{z} C_{x} \end{pmatrix} \uparrow$$

$$+ \begin{pmatrix} B_{x} C_{y} - B_{y} C_{y} \end{pmatrix} \stackrel{\triangle}{=}$$

$$\overrightarrow{A} \times (\overrightarrow{g} + \overrightarrow{c}) = \begin{pmatrix} i & j \\ A_{7} & A_{7} & A_{2} \\ B_{7} C_{2} - B_{2} C_{2} & -(B_{7} C_{2} - B_{2} C_{7}), (B_{7} C_{7} - B_{7} C_{7}) \end{pmatrix}$$

By Combining A, and Az we form a rectangle with the same area as the parallel gram. The area of the rectangle is $d|\vec{A}| = Area$

B = sin 0

Arro = lAllBlsine = lAxBl

$$\overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C}) = \begin{pmatrix} A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \\ C_{x} & C_{y} & C_{z} \end{pmatrix}$$

Show []· (] >]]

is volume of parollelpiped.

IA·(B×C) = IAIIB×C) coso

Brit A

d = (050

The area of the parallel piped (imagine adding slices in the shape of the base) is d|Bx2| = [A]|Bx2| rout

Robbin about Z-axis

$$cos \phi$$
 $sin \phi$ $cos \phi$ $cos \phi$ $cos \phi$ $cos \phi$ $cos \phi$

$$\vec{v}\left(\frac{\pi}{2\omega}\right) = -b\omega\hat{c}$$

$$\frac{5\text{peed}}{\vec{v}} = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{b^2 \omega^2 \sin \omega t} + 4b^2 \omega^2 \cos^2 \omega t$$

The position of a particle is given by $\vec{r}(t) = \hat{r}(1 - e^{-kt}) + \hat{f}e^{kt}$ $\vec{v} = \hat{r} = \hat{f}ke^{-kt} + \hat{f}ke^{kt}$ $\vec{d} = -\hat{f}k^{2}e^{-kt} + \hat{f}k^{2}e^{kt}$

$$\frac{d}{dt} \overrightarrow{r} \cdot (\overrightarrow{v} \times \overrightarrow{a})$$

$$= \overrightarrow{v} \cdot (\overrightarrow{v} \times \overrightarrow{a}) + \overrightarrow{r} \cdot (\overrightarrow{d} + (\overrightarrow{v} \times \overrightarrow{a}))$$

$$\frac{d}{dt} (\overrightarrow{v} \times \overrightarrow{a}) = \overrightarrow{a} \times \overrightarrow{a} + \overrightarrow{v} \times \overrightarrow{a}$$

$$\frac{d}{dt} \overrightarrow{r} \cdot (\overrightarrow{v} \times \overrightarrow{a}) = \overrightarrow{r} \cdot (\overrightarrow{v} \times \overrightarrow{a})$$

$$\frac{d}{dt} \overrightarrow{r} \cdot (\overrightarrow{v} \times \overrightarrow{a}) = \overrightarrow{r} \cdot (\overrightarrow{v} \times \overrightarrow{a})$$