Chapter 3 OSCILLATIONS
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The resonance denominators in Equation 3.9.14 are given by
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The phase angles {Equation 3.9.15) are
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which gives
by =0 & = tan 10.133) = 013
by =tan"! x = /2 b3 = tan"!(—024) = —0.236
The steadv-state motion of the system is therefore given by the following series
tion 3.9.13):

F

M) = —0.1 + 0.26 cos(wt — 0.132) + 0,935 sin(2wt) + 0.134 cos(3wt + 0.236) + . .3
mws

The dominant term is the one involving the second harmonic 2¢ = wy, because w,, is cla

the resonant frequency. Note also the phase of this term: cos(2wt —7/2) = sin(2wt),

PROBLEMS

3.1 Aguitar string vibrates harmonically with a frequency of 512 Hz (one octave above
middle C on the musical scale). If the amplitude of oscillation of the centerpoint of
string is 0.002 m (2 mm), what are the maximum speed and the maximum accelerag
at that point?

A piston executes simple harmonic motion with an amplitude of 0.1 . If it passes
through the center of jts motion with a speed of 0.5 m/s, what is the period of
oscillation®

A particle undergoes simple harmonic motion with a frequenc}' of 10 Hz. Find the
placement v at anyv time ¢ for the following initial condition:

t =20 Y =025m ¥ =01 ms




%erify the relations among the four Guantities C, D, ¢,,, and A given by

E:quation 3.2.19,

A gsamde undergoing simple harmonic motion has a velocity ¥, when the displacement

=1 and a velocity v, when the displacement is x,. Find the angular frequency and the

amplitude of the motion in terms of the given quantities.

2om the surface of the moon, the acceleration of gravity is about one-sixth that on the ,

Zarth \What is the half-period of a simple pendulum of length 1 m on the moon? -

w0 springs having stiffness k| and Ky, respectively, are used.in a vertical position to

sipport a single object of mass m. Show that the angular frequency of oscillation is
8o~ kyim] b2 if the springs are tied in parallel, and [k ky/tky + kym) V2 if the

sorings are tied in series.

A spring of stiffness k supports a box of mass M in which is placed a block of mass m.

7 the sustem is pulled downward a distance d from the equilibrium position and then

~gieased, find the force of reaction between the block and the bottom of the box as a

“unction of time. For what value of d will the block just begin to leave the bottom of

e box at the top of the vertical oscillations? Neglect any air resistance.

show that the ratio of two successive maxima in the displacement of a damped har-

monic oscillator is constant. (Note: The maxima do not occur at the points of contact

of the displacement curve with the curve Ae =)

A damped harmonic oscillator with m = 10kg, k = 250 N/m, and ¢ = 60 kg/s is sub-

et to adriving force given by F cos wt, where F,=48N.

ia) What value of w results in steadv-state oscillations with maximum amplitude?
Under this condition:

b} What is the maximimn amplitude?

e} What is the phasc shift?

Amass nemoves along the v-axis subject to an attractive force given by 1782mx/2 and

a retarding force given by 38mzx, where v is its distance from the origin and B is a con-

stant. A driving force given bv mA cos wt, where A is a constant, is applied to the par-

ticle along the v-axis.

{fa) What value of w results in steady-state oscillations about the origin with maximum
amplitude?

tb) What is the maxinnnm amplitude?

The trequency £, of a damped harmonic oscillator is 100 Hz, and the ratio of the am-
plitude of two successive maxima is one half,
(@) What is the undamped frequency £, of this oscillator?
(b) What is the resonant frequency f,»
Given: The amplitude of & damped harmonic oscillator drops to 1/e of its initial value
after n complete ceveles. Show that the ratio of period of oscillation to the period of the
same oscillator with no damping is given by

12

T, ( 1') 1
= (] +

T, d72n2 8min2

where the approximation in the Jast expression is valid if n is large. (See the approxima-
tion formulas in Appendix D.:

Work all parts of Example 36.1 tor the case in which the exponential damping factor y
is one-half the critical value and the driving frequency is equal to 2w,,.
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3.15  For alightly damped harmonic oscillator ¥ << w,, show that the driving frequency for
which the steady-state amplitude is one-half the steady-state amplitude at the resonant
frequency is given bvw =w, * y\3.

3.16 1If a series LCR circuit is connected across the terminals of an electric generator that
produces a voltage V' = V¢« the flow of electrical charge ¢ through the circuit is
given by the following second-order differential equation:

[{h(/ 4 [/i 4+ i(/ = \'”Um/r

4 -
dt? de ¢

(a) Verifythe correspondence shown in Table 3.6.1 between the parameters of a
driven mechanical oscillator and the above driven electrical oscillator.

(b) Caleulate the Q of the electrical circuit in terms of the coefficients of the above
differential equation.

(e} Show that. in the case of small damping, Q can be written as Q = R,/R. where
R, = \VL/C is the characteristic impedance of the circuit,
3.17 A damped harmonic oscillator is driven by an external force of the form
F.. = F,sin wt
Show that the steach-state solution is given 5
vith = Alwi siniwt — ¢
where Avw ) and & are identical to the expressions given by Equations 3.6.7e and 3.6.5

3.18  Solve the differentiad equation of motion of the damped harmonic oscillator driven b
a damped harmonic force

I‘:'\l“

1= Fie ™ cos wt

(Hint: e " cos wt = Rele @' 7 i9t) = Re{ph). where B = —a + iw, Assume a solution
of the form AeBt-1¢
3.19 A simple pendulum of length { oscillates with an amplitude of 45°.
(a) Whatis the period?
(b) If this pendulum is used as a laboratory experiment to determine the value of g

find the error included in the use of the elementary formnla 7, = 27 (/g1 2.

(¢) Find the approximate amount of third-harmonic content in the oscillation of the
pendulum.

3.20  Veritv Equations 3.9.9 and 3.9.10 in the text.
3.21 Show that the Fourier series for a periodic square wave is

1 1
fith = =] sinfwt) + = sini3wt) + = sinSwt) +
’ T 3 35

where

fiti = +1 for 0 < wt < 7. 27 < wt < 37 and so on
fiti = —1 for 7 < wf < 27 37 < wt < 47, and so on

3.22  Use the above result to find the steadv-state motion of a damped harmonic oscillator
that is driven by a periodic square-wave force of amplitude F,. In particular, find the
relative amplitudes of the first three terms, A 1» Ay and A of the response function 1 2
in the case that the third harmonic 3w of the driving frequency coincides with the fre
quency @, of the undamped oscillator. Let the quality factor Q = 100.
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3.23 () Derive the first-order differential equation. dy/dx, describing the phase-space tra-
jectory of the simple harmonic oscillator.
(b) Solve the equation, proving that the trajectory is an ellipse.
3.24 A simple pendulum whose length { = 9.8 m satisfies the equation
§+sinf =0
(a) I O, is the amplitude of oscillation, show that its period T is given by
-2
= d o]
T =4 f __J_é?__: where a = sin? = 0,
o 1 = asin? 2 2
(h) Expand the integrand in powers of @ integrate terin by term, and find the period
T as 4 power series in . Keep terms up to and including Ofa?).
(¢) Expand e ina power series of ), insert the result into the power series found
in beand find the period T as a power series in O, Keep terms up to and in-
clading 01671

COMPUTER PROBLEMS

€ 3.1 The exact equation of motion for a simple pendulum of length L (see Example 3.2.2)
is given by

6+ w2sing =0
where w3 = ¢/L. Find 6(1) by numerically integrating this equation of motion. Let
L = 1.00 m. Let the initial conditions be 6, = 7/2 rad and 6, = 0 rad/s.

(a) Plotfiti fromt = 0to 4 5. Also, plot the solution obtained by using the small-
angle approximation isin 8 = 4) on the same gmph.

(b) Repeat a: for 8, = 3.10 rad.

(e Plot the period of the penduluni as a function of the amplitude 6, from 0 to

310 rad. At what amplitude does the period deviate by more than 2% from
\ /L7

€ 3.2 Assume that the damiping force for the damped harmonic oscillator is proportional to
the square of its velocity; that is. it is given by —c¢, x4 The equation of motion for
such an oscillator is thus

¥+ 2y |yl + wiy = 0

where y = ¢,/2m and w3 = k7. Find xi¢) by numerically integrating the above
equation of motion. Let y = 020 m ! s~ and w, = 2.00 rad/s. Let the initial condi-
tions be xi01 = 100 m and £(0} = 0 m/s.

(a) Plotxitifromt = 0to 20 s. Also, on the same graph. plot the solution for the
damped harmonic oscillator where the damping force is linearly proportional to
the velocity; that is. it is given by —c, . Again, lety = ¢,/2m = 0.20 s} and
wy = 2.00 rad/s.

(b} For the case of linear damping, plot the log of the absolute value of the succes-
sive extrema versus their time of occurrence. Find the slope of this plot, and use
it to estimate y. : This method works well for the case of weak damping.)

-
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