Homework 1 — Mechanics -Due Tuesday 1/21/2003
Turn Homework in at Dr. Stewart’s Mailbox in the Physics Office
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Review Problems

R1. Draw the free body diagram and the extended free body diagram for a marble sliding into a
bowl. Does the marble rotate as it slides? Justify your answer.

R2. A hockey puck (Puck 1) of mass m and velocity v collides elastically with a second hockey puck
(Puck 2) on a frictionless surface. The second puck is attached to a stake by a massless string of
length R. The direction of motion of puck 1 and the string are at right angles. After the collision, the
hockey puck revolves around the stake. The three objects of interest in this problem are the two
hockey pucks and the earth. The earth is assumed to be at rest before the collision.
1. Analyze the energy, momentum, and angular momentum using the universe as the system.
2. Analyze the energy, momentum, and angular momentum using the second hockey puck as

the system.
Bonus
B1. What are the classic blunders?
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36 Chapter1 FUNDAMENTAL CONCEPTS: VECTORS

gives directly
a = ~bwisin®b - hwle, - bw3 sin 6 cos 9 e, + 2bw,w, cos f e,
The point at the top has coordinate 6 = 0. so at that point

a = —hwie, + 2w w,e,

The first term on the right is the centripetal accel

eration. and the last term is a transverse
acceleration normal to the plane of the wheel.

PROBLEMS

1.1 Given the two vectors A = j +jand B =j + k, find ¢
(a) A+ Buand|A + B|
{b) 3A - 2B
(¢) A-B
(d) A X Band A x B/

1e following:

1.2 Given the three vectors A = 2§ + jB=i+kandC
(@) A-B~-Cuad A~B.C
by A- BX Cand AXB:.C
(€) AX BXCand'AXB xC

= 4j, find the following;

1.3 Find the angle hetween the vectors A = ¢ « 2ajand B = ¢j +
These two vectors define a face diagonal and a bodv diagonal
of sides a. 2a, and 3a.

2aj + 3ak. Note:
ot arcctangnlar block
L4 Considera cube whose edges are cach of unit length. One corner coincides with the
origin of an Oxyz Cartesian coordinate svstem. Three of the cube’s edges extend from
the origin along the positive direction of each coordinate axis. Find the vector that be-
gins at the origin and extends

(a) alonga major diagonal of the cube:

(b) along the diagonal of the lower face of the cube.
(e} Calling these vectors A and B, findC=A x B.
(d) Find the angle hetween A and B.

L5 Assume that two vectors A and B are known. Let € be an unknown vector such that
A C = yisaknown gquantitvand A X C = B, Find C in terms of A, B, u, and the
magnitude of A.

1.6 Given the timen arving vector
A =dat + jBt? + kys
where a. B.and y are constants. find the first and second time derivatives dA et and
dEAAd

L7 Forwhat valne sor values: of ¢ is the vector A = ig +

3j = k perpendicular to the
vector B =iy - ¢j + 2k>
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PROBLEMS

L8  Givean algebraic proof and 4 geometric proof of the foHom‘ng relations.
/A + B] = A] + |B|
A B = A B]

L9 Prove the vector identitv A x |B x C=BA.C)-CiA. B

LI0O  Two vectors A and B represent concrrrent sides of a paralle]
of the parallelogram is cqualto [A x B I

L1l ShowthatA . (B x Clisnotequalto B . (A x C.

L12  Three vectors A, B,and C represent three concurrent edges of
that the volume of the parallelepiped is equalto [A . (B x C)|

L13  Verify the transformation matriy for arotation about the z-avis through an angle ¢ fol-
lowed bv a rotation about the y'-axis through an angle 6, ag given in Example 1.§.2,

L14  Express the vector 24 + 3j = kin the primed triad i'j’k’ in w]

rotated about the z-uyig (which coincides with the z

L15 Consider two Cartesian coordinate svstems Oxyz and Ox'y'z" that initial]
The Ox'y 'z’ undergoes three suceessive counterclockwise 43° rotations
Iom‘ng axes; first, abont the fixed z-axis: second, about its owr x'-axis (wi
been rotated): finally. about its owm =

ogram. Show that the areq

a paraHeIepiped Show

lich the vy -axes are

"-axis) through an angle of 30°,

Vv coincide.

about the fol-

rich has now

“~axis twhich has also been rotated), Find the

components of a unit vector X iy, the Oxyz coordinate svstem that points along the di-

rection of the x"-axis in the rotated Ox'y"z" svstem. | Hing- 1t would be useful to find

three transformation matriees that depict each of the aboce rotations. The resulting

transformation matrix is sim))/g/ their product. )

1.16 A racing car moves on 4 circle of congtant radius b. If the speed of the car varies with
time ¢ according to the equation v = ¢t where ¢ i a positive constant, show that the
angle between the \'e]()cit)' vectorand the acceleration vector is 43° at time ¢ = s
THint: At this time the tangential and normal components of the acceleration are equal
in magnitude. }

LI7 A small bay s fastened to 4 long rubber band und twirled

around in such » wav that the
ball moves in an elliptical path given by the equation

i) = ib cos wt + 320 sin wt

where b and w are constants. Find the speed of the ball
findvate =g and at ¢ = 7/ 2w, at which times the ball
and maximum distances from the origin
1.18 A buz'/jng iy mow

as a function of ¢, In particular,
is, respe(-ti\'ol}: at its minimum

esin a helica] path given by the equation

rt) = ib sin wt + Jb cos wt + key2

Show that the magnitude of the
are constant.

L.I9 A bee goes out from its |

acceleration of the flv is constant, provided b, w, and ¢

Ve in a spiry] path given in plane polar coordinates by
ro= hekt 0 = ¢t
where b, &, and ¢ are positive constants. Show that th

e angle between (he velocity vee-
tor and the acceleration veetor remains constant as the hee moves outward. ( Hint: Find
vealta.

1.20 \Work Problem .18 using cvlindricy] coordinates where R = b.d=wt andz = o2
L21 The position of 4 particle as a function of time is given by

P = (1 — p-kty 4 ;

J

okt
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where k is a positive constant, Find
its trajectory.

122 Anant crawls on the surface of a ball of radius  in such a manner that the
s given in spherical coordinates by the equations

the velocity and acceleration of the particle. Sketch
ant’s motion

= = =211+ cosdwr

r=5 b = wrt =3 +1005w4w1;
Find the speed of the ant as a function of tl
b the above equations?

1.23 Prove thatv.a = ;¢ and. |

te time ¢ What sort of patli is represented

1ence. that for a moving particle v and a
to each other if the speed ¢ is constant. ( Hin- Differentiate
vev =2 ith respect to t. Note, ¢ is not the same as
acceleration of the particle along its instantaneous dir,
1.24  Prove that

are perpendicular
both sides of the equation
lal. It is the magnitude of the
ection of motion.

d !
—r v xal=r.nxa
dt

1.25  Show that the tangential component of the ace

eleration of a moving particle is given by
the expression

v.a
a. =
v
and the normal component is therefore
12
o 1 5
a, = iat = git= |42 o

1.26  Use the above result to find the tangential and norin
as functions of time in Problems 1.1$ and 1.19.

1.27  Prove that [v x
particle.

1.28 A wheel of radius b rolls along the ground with constant forward acceleration «,,. Show
that. at anv given instant. the magnitude of the acceleration of auy point on the wheel iy
g+ YDA pelative to the center of the wheel and is also apl2 +2cos ) + YVazh?
= 20 %a,blsin 842 relative to the ground. Here r is the instantancons forward speed.
and 6 defines the location of the poiht on the wheel, measured forward from the high-
est point. Which point has the greatest acceleration relative to the ground?

al components of the acceleration

al = t%/p, where pis the radius of curvature of the path of a moving

e
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