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Due Monday 4/28/2003 at 5:00 or end of office hours

Fowles Problems
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in polar coordinates. Hence.
o ), 10.4
P = — = mr o=
ar m
dL . . )
Pe =~ = mr2f g = Lﬁj
a6 mr? 105
Consequently,
1 ( T
= —(p2+ ") & vy
2m \l' r?
The Hamiltonian equations 10.6
oH o oH . aH
_— = j ’—:—)’ '“:0 —:—’)H o
ap, ar Py a6 10.7
then read
D) 10.8
m
aviy: )
T ]‘H, = =p, 10.9
oy my 10‘10
Po
mr?
0= —p, 10.11
The last two equations vield the constancy of angular momentum:
Ps = constant and mr2f =l
from which the first two give
. ] ml2 3V
mr =pn = - - —
P T T
tor the radial equation of motion. This. of course. is equivalent to that found earlier in Fx-
ample 10.5.2, 10.12

PROBLEMS

Lagranges method should |
otherwise,
10.1  Calculate the integral

e used in all of the following problems, unless stated

12
Jia) = f Llxia. t). 2la. 1, ¢} dt
t

1
for the simple harmonic oscillator. Follow the anal
that Jiatis an extremum at @ = 0.
10.2  Find the differential equations of motion of a
field without air resistance.

vsis presented in Section 10.1. Show

projectile in a uniform gravitational
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Find the acceleration of a solid uniform sphere rolling down a perfectly rough. fixed
inclined plane. Compare with the result derived earlier in Section 8.6.

Two blocks of equal mass m are connected by a flexible cord. One block is placed on a
smooth horizontal table, the other block hangs over the edge. Find the acceleration of
the blocks and cord assuming (a) the mass of the cord is negligible and (b) the cord is
heavy, of mass m'

Set up the equations of motion ot a “double-double” Atwood machine consisting of
one Atwood machine (with masses m, and m, 1 connected by means of a light cord
passing over a pulley to a second Atwood machine with masses my and m . Ignore
the masses of all pullevs. Find the accelerations tor the case m, = m.m, = 4.
my=2m.andm,; = m.

A ball of mass i rolls down a movable wedge of mass M The angle of the wedge is 6.
and it is free to slide on a smooth horizontal surface. The contact between the ball and
the wedge is perfectly rough. Find the acceleration of the wedge.

A particle slides on a smooth inclined plane whose inclination ¢ is increasing at a con-
stant rate w. If @ = O at time ¢ = 0. at which time the particle starts from rest. find the
subsequent motion of the particle.

Show that Lagrange’s method automatically vields the correct equations of motion for
a particle moving in a plane in a rotating coordinate svstem Oxy. (Hint: T =S mv -y,
where v =1i¥ — wy) + jly + wx), and F, = —aV/ax. F, = —aV/ay.

Repeat Problem 10.8 for motion in three dimensions.

Find the differential equations of motion for an “elastic pendulum™ a particle of mass
m attached to an elastic string of stiffness K and unstretched length [,,. Assume that
the motion takes place in a vertical plane.

A particle is free to slide along a simooth eveloidal trough whose surface is given by
the pm‘znnetric equations

-
i

a
1(2() + sin 26

1
y = 1\1 — cos 26!

where 0 < 0 = 7 and a is a constant. Find the Lagrangian function and the equation
of motion of the particle.

A simple pendulum of length ! and mass m is suspended trom a point on the cir-
cumference of a thin massless disc of radius @ that rotates with a constant angular
velocity w about its central axis as shown in Figure P10.12. Find the equation of mo-
tion of the mass m.

Figure P10.12
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10.13 A bead of mass i is constrained to slide along a thin, circular hoop of radius  that ro-

tates with constant angular velocitv w in a horizontal plane about a point on its rim as
shown in Figire P10.13,

Figure P10.13

(a) Find Lagrange’s equation of motion for the bead.

(b) Show that the bead oscillates like a pendulum about the point on the rim dia-
metricallv opposite the point about which the hoop rotates.

(¢) What is the effective “length” of this “pendulum”?

The point of support of a simple pendulum is being elevated at a constant accelera-
tion a. so that the height of the support is at? and its vertical velocity is at. Find the
differential equation of motion for small oscillations of the pendulum by Lagrange <
method. Show that the period of the pendulum is 27 ([l/tg + a)]*2 where ! is the lengs
of the pendulum.

Work Problem .12 by using the method of Lagrange multipliers. (a) Show that the
acceleration of the ball is 2 2. (b) Find the tension in the string,

A heavy elastic spring of uniform stiffuess and density supports a block of mass m. I
m" is the mass of the spring and & its stiffness, show that the period of vertical oscil-
lations is

m 4+ (m'/3)
\/ k

2

This problem shows the effect of the mass of the spring on the period of oscillation
(Hint: To set up the Lagrangian function for the system, assume that the velocity of
any part of the spring is proportional to its distance from the point of suspension

Use the method of Lagrange multipliers to find the tensions in the two strings of the
double Atwood nachine of Example 10.5 4.

A smooth rod of length [ rotates in a plane with a constant angular velocity @ abow am
axis fixed at one end of the rod and perpendicular to the plane of rotation. A bead o
mass nis initially positioned at the stationary end of the rod and given a slight puse
such that its initial speed directed aloug the rod is wl.

(a)  Find the time it takes the bead to reach the other end of the rod.

(b) Use the method of Lagrange multipliers to find the reaction force F that the roé
exerts on the bead,

A particle of mass m perched on top of a smooth hemisphere of radius a is disturkes

ever so slightlv. so that it begins to slide down the side. Find the normal force of com-

straint exerted by the hemisphere on the particle and the angle relative to the verz-

cal at which it leaves the hemisphere. Use the method of Lagrange multipliers
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10.20 A particle of mass m, slides down the smooth circular surface of radius of curvature a
of a wedge of mass m, that is free to move horizontally along the smooth horizontal
surface on which it rests (see Figure P10.20).

Figure P10.20

Find the equations of motion for each mass.

Find the normal force of constraint exerted by the wedge on the particle. Use
the method of Lagrange multipliers.
Find the general differential equations of motion for a particle in cvlindrical co-
ordinates: R, ¢, z. Use the relation
2=} + vyt ol

R? + R2¢% + 32
Find the general differential equations of motion for a particle in spherical coor-
dinates: r, 8, ¢. Use the relation

1;2:1;;2,+c3+ti
=2 + r2g? + r2 ¢ sin- ¢

(Note: Compare your results with the result derived in Chapter 1. Equations 1.12.3
and 1.12.14 by setting F = ma and taking components.
Find the differential equations of motion in three dimensions for a particle in a cen-
tral field using spherical coordinates.
A bar of soap slides in a smooth bowl in the shape of an inverted right circular cone
» of apex angle 2a. The axis of the cone is vertical. Treating the bar of soap as a particle
ot oserllamn : of mass m, find the differential equations of motion using spherical coordinates with
e Velicy 7 : P § = a = constant. As is the case with the spherical pendulum, Example 10.6.2, show
FUSDTan 3 that the particle, given an initial motion with d}() # (0. must remain between two hori-
3 strings of T C zontal circles on the cone. (Hint: Show that 72 = fir ). where f(r: = 0 has two roots
3 that define the turning points of the motion in r.) What is the effective potential for
CHY w aboer m this problem?
on A hest of 1 In Problem 10.23, find the value of ¢, such that the particle remains on a single hori-
2shahe st v zontal circle: r = ry. Find also the period of small oscillations about this circle if &, is
not guite equal to the required value.
As stated in Section 4.5, the differential equation of motion of a particle of mass m and
electric charge ¢ moving with velocity v in a static magnetic field B is given bv

mt = ¢iv X B
Show that the Lagrangian function

L=-me?+gv-A
b
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10.26

10.27

10.28

10.29

10.30

C 10.1 Asswine that the spherical pendulum discussed in Section 10.6 s set into motion

Chapter 10 LAGRANGIAN MECHANKS

vields the correct equation of motion where B = V x A, The quantity A is called g
vector potential.  Hint: In this problem it will be necessary to employ the general for-

muladf x y 2)/de = v afrox + yaflay + z af/os. Thus. for the part incolving v . 4.
we have

d | dve Al d | é ” A -y d 4
- =oALt gA + 24 0 =
dt ax de [z T ; de "
0, dA, dA,
=X+ — +
dx Jy z

and similarly for the other derivatives, J
Write the Hamiltonian function and find Hamilton's canonical equations for the
three-dimensional motion of a projectile in a uniform gravitational field with no air

resistance. Show that these equations lead to the same equations of motion as found
in Section 4.3,

Find Hamilton's canonical equations for

(a) A simple pendulum

(b) A simple Atwood machine

(¢} Aparticle sliding down a smooth inclined plane

A particle of mass m is subject to a central. attractive force given by
Fiorfr = Te s exp A
-2

where k and 8 are positive constants. ¢ is the time. and r is distance to the conter o
torce. (a) Find the Hamiltonian function for the particle. (b) Compare the Hami-
tonian to the tota] energy of the particle. (¢) Is the energy of the particle conser qds
Discuss.

Two particles whose masses are myandin, are connected by a massless Spring of wme
stressed length [ and spring constant k. The svstem is free to rotate and vibrate op =
ot a smooth horizontal plane that serves as its support. (a) Find the Hamiltonian «€
the svstem. (b) Find Hamilton’s equations of motion. (c) What generalized momensz,
it anv. are conserved?

As we know, the kinetic energy of a particle in one-dimensional motion is %nz.x”-’, 11 e
potential energy is proportional to v 2, savike2 show by direct application of Harede
ton’s variational principle. 8 [ L dt = 0, that the equation of the simple harmonic cscss
lator is obtained.

COMPUTER PROBLEMS

with the tollowing initial conditions: by = 0rad. &, = 1057 rad/s, Oy =7 4 rad
and B, = 0 rad’s. Let the length of the pendulum be 0.284 m.

(a) Calculate tyand 6, the polar angular limits of the motion,

2= -Uig1+C=0

10| —~—

iHint: Solve the equation numerically for the condition of 8, =0
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