Mechanics Spring 2003 - Homework 11
Due Never - Solution in Library

Problem 11.1 Work Fowles Problem 11.2
Problem 11.2 The system below is composed of one mass m and two springs with spring constants k) = 2 and

ky = 3. The springs have un-stretched lengths I, = Iy = £y. The supports to which the springs are attached are
d = 3¢, apart. Let z be the distance the mass is from the left support.

(a) Write the potential energy function for the system.
(b) Find the cquilibrium location of the mass from the potential.
(¢) Mathematically show the equilibrium is stable.

(d) TFind the frequency of oscillation of the system.

spring 2

Problem 11.3 The svstem below has two masses each of mass m and three springs with spring constants k; = 1,

ko, = 2, and k3 = 3. Let the equilibrium location of the masses be given by z; and wo, measured from the left
support. The masses oscillate in a line.

(a) Write the Lagrangian for the syste.
(b) Find the frequencies of the normal modes of the systemn.
(¢) Find the eigenvectors of the normal modes.

(d) How must the system be prepared for it to oscillate only with the lower normal frequency?

spring 1 spring2 spring 3

mass 1 mass?2

Problem 11.4 Work Fowles Problem 11.20. Hint: Find the Lagrangian and make small oscillation approximation.
The cos 6 term in the kinetic energy becomes 1 if 6 is small. You only have to find the normal frequencies.



LLATING SYNTEMS

Cdisturbiances

allvin time Toe

4 :
11612

itvaries sinnseac- ; j

Or MInin 0f e

ssented by Forse e
ated by Equatz = .
T}l(’} ATe S 9 |

IV inber of «o-
= linear combin a-
al amplitude 4 2
s given

11613

. s
wee find that -5 -

161

A Note that this
'
NSNS \zmpsx A

By t}]dt »‘}J.(‘ M-

PROBLEMS 479

Figure 11.6.3 A standing sinusoi- .
dal wave. Node Antinode

facts are illustrated in Figure 11.6.3. Note again that there is a well-defined constraint
on the values of allowable wavelengths A. Since the endpoints of the string are fixed, we
have as boundary conditions

g =10 (x =0, L) (11.6.15)

that our solution (Equation 11.6.14) must obev. The first condition at x = 0 is met auto-
matically. The second boundary condition at v = L is met if
A oL

L—‘-;\g /\—N

(11.6.16)

An integral number of half wavelengths must fit within the length L if the endpoints are
to be nodes. This is precisely the condition obtained previously for the normal modes of
the loaded string.

PROBLEMS

111 A particle of mass m moves in one-dimensional motion with the following potential
energyv functions:

(a) Vix) = E\

(b) V(1) = kxe
(¢) Vixi=kx'—h22)

4 —

where all constants are real and positive. Find the equilibriun positions for each
case and determine their stability.

(d) Find the angular frequency w for small oscillations about the respective positions
of stable equilibrium for parts (a), (b), and (¢), and find the period in seconds for
each caseif m = 1 g, and k and b are each of unit value in cgs units.

11.2 A particle moves in two dimensions under the potential energy function
Vie, y) = k(x? + y*> — 2bx — 4by)

where & is a positive constant. Show that there is one position of equilibrium. Is it
stable or unstable?

11.3  The potential energy function of a particle of mass m in one-dimensional motion is
given by

xt
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and so the force is of the antirestoring type
Flx) = kx

with x = 0 as a position of unstable equilibrium w
initial conditions are t = 0, ¢ = Xy, and & = 0, sho
by an exponential “runaway”

hen k is a positive constant. If the
w that the ensuing motion is given

x(t) = xy{ex + g—at)/
where the constant a = /m.

114 Alight elastic cord of length 2 and stiffness k is held with the ends fixed a distance 27
apart in a horizontal position. A block of mass m is then suspended from the midpo

int
of the cord. Show that the potential energy of the system is given by the expression

Viy) = 2kfy? - 2l(y? + [2)12] — mgy

where y is the vertical sag of the center of the cord. From this show

that the equilib-
rium position is given by a root of the equation

4

ut = 2au’ + a%u? — 2qy + ¢2 = 0

where y = y/landa = mg/4kl
11.5 A uniform cubical block of mass m and sides 24 is ba

lanced on top of a rough sphere
of radius b. Show that the potential

energy function can be expressed as
Vig: = mglia + bl cos 6 + bo sin f)

where 8 is the angle of tilt. From this, show that the equilibrium at 8 = 0 is stable. or
unstable, depending on whether ¢ is less than or greater than b, respectively.

11.6  Expand the potential energy function of Problem 11.5 as a power series in 6. From k:
this determine the stability for the case @ = b,

1

11.7 A solid homogeneous hemisphere of radius a rests on top of a rough hemispherica}

cap of radius b, the curved faces being in contact. Show that the equilibrium is stable

if @ is less than 3b/5.
11.8  Determine the frequency of vertical oscillations about the equilibrium position in

Problem 11 4. 11
11.9  Determine the period of oscillation of the block in Problem 11.5.
11.10 Determine the period of oscillation of the hemisphere in Problem 11.7.
11.11 A small steel ball rolls back and forth about its equilibrium position in a rough sphen-

cal bowl. Show that the period of oscillation is 27 [7(h — a)/5¢1Y2 where a is the ra- 11.1

dius of the ball and b is the radius of the bowl. Find the periodin seconds if b = 1 my

ande = 1 em, 11.2

11.12 Foran orbiting satellite in the form of a thin rod, sh
titude and period of oscillation are the same as t}
dumbbell satellite.

11.13  In the svsten of two identical coupled oscillators shown in Figure 11.3.1. one oscilla-

tor is started with initial amplitude A, whereas the other is at rest at its equilibriun;
position, so that the initial conditions are

ow that the stable equilibrium at-
hose found in Example 11.2.2 for the

t =20

x00) = A, (0 =0 1(0) = 5,00 = 0

Show that the amp
the antisymmetric
pressed as follows:

litude of the svmmetric component is equal to the amplitude of
component in this case and that the complete solution can be ex-
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) 1 —
xy(t) = 5 Aglcos w,t + cos w,t! = A, cos @t cos At

—

Yt = 5 Aglcos w,t — cos w,th = A, sin @t sin At

in which@ = (@, + @, /2 and A = 1w, ~ w, /2. Thus, if the coupling is very weak
so that K’ < K, then @ will be verv nearly equal to w, = (K/m}!"2, and A is very
small. Consequently, under the stated initial conditions, the first oscillator will even-
tually come to rest while the second oscillator oscillates with amplitude A,. Later, the
svstem will return to the initial condition, and so on. Thus, the energv passes back and
forth between the two oscillators indefinitely.

11.14 In Problem 11.13 show that, for weak coupling, the period at which the energy trades
back and forth is approximately equal to T,(K/2K') where T, = 27/w, = 2a/(m/K)172
is the period of the svmmetric oscillation.

11.15 Two identical simple pendulums are coupled together by a very weak force of attrac-
tion that varies as the inverse square of the distance between the two particles. (This
force might be the gravitational attraction between the two particles, for instance.)
Show that, for small departures from the equilibrium configuration. the Lagrangian
can be reduced to the same mathematical form, with appropriate constants, as that of
the two identical coupled oscillators treated in Section 11.3 and in Problem 11.13.
(Hint: Consider Equation 11.3.9.)

11.16 Find the normal frequencies of the coupled harmonic oscillator system (see Fig-
nre 11.3.1) for the general case in which the two particles have unequal mass and the
springs have different stiffness. In particular, find the frequencies for the case m, =
m.om, =2m K, =K K, = 2K, K' = 2K Express the result in terms of the quantity
wy = (Kimiit2,

11.17 A light elastic spring of stiffness K is clamped at its upper end and supports a particle
of mass n at its lower end. A second spring of stiffness Kiis fastened to the particle and.
in turn, supports a particle of mass 2m at its lower end. Find the normal frequencies
of the svstem for vertical oscillations about the equilibrium configuration. Find also
the normal coordinates.

11.18 Consider the case of a double pendulum, Figure 11.3.7a, in which the two sections
are of different length, the upper one being of length [, and the lower of length /.
Both particles are of equal mass m. Find the normal frequencies of the system and
the normal coordinates.

} 1 11.19  Set up the secular equation for the case of three coupled particles in a linear array and

sith=1m E show that the normal frequencies are the same as those given by Equation 11.5.17.

. 11.20 A simple pendulum of mass m and length a is attached to a block of mass M that is
constrained to slide along a frictionless, horizontal track as shown in Figure P11.20.
Find the normal frequencies and normal modes of oscillation.
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11.21 Three beads of mass m, m, and 2m are constrained to slide along a frictionless_ circular
hoop. The two small masses are each connected to the large mass and also to each
other by springs of length a and force constants k and k', respectively. The masses are
shown in Figure P11.21 at their equilibrium positions. which are located at 120° an-
gular separations. The largest mass is initially displaced 10° clockwise from its equilib-
rium position, and the other two are held fixed in place. The three masses are then
simultaneously released from rest.

1
1
Figure P11.21 E
(a) Find the normal frequencies and normal modes of oscillation. 1
(b) Solve for the resulting motion of each mass.
11.22 Find the matrix A that diagonalizes the K and M matrices in the case of the linear 3
triatomic molecule of Example 11.4.1. Show that the ratio of their diagonal elemnents ;
is equal to the eigenfrequencies of the normal modes of oscillation.
11.23 A triatomic molecule like hvdrogen sulfide (H,S) consists of two hydrogen atoms of
mass m and one sulfur atom of mass M constrained by atomic bonding forces to assume
the triangular configuration shown in Figure P11.23. Assume that the bonding forces C

can be approximated by springs whose force constant is k. When the three atoms are
in their equilibrium configuration, the HS distance is# = 1.67 X 10 71 and the
H— S — H vertex angle is approximately 2 = 90°. Find the normal frequencies and
normal modes of oscillation. Assume that the hvdrogen atoms do not interact directly
with each other.

Figure P11.23 m

11.24 Two waves are traveling through a medium. Assume that the displacements from eqgu:-
librium of particles that make up the medium are given by the tunctions

L/l('\'~ t) = Ae““’”’k‘

C]gkll t) = Aenﬂrvl(v

whose real part represents the physical wave.
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Africtionless. cireviar (a) Show that each of these functions are solutions of the wave equation.
and also to each

v The masses ar=
ocated at 1207 a=

(b) Assume that the frequencies and wave numbers differ by small amounts

) =w+ Aw K =Lk + Ak

ise from its eqin tenoring small differences of second order. show that the real part of the resul-

' asses are ther tant wave iumetion is given approximately by

QAwit — Ak
Qv th = g + ¢y =~ 2cos| — | cosiwl kx)

The resultant wave has the same frequency and wave number as the original wave,
but it has a modulated amplitude (the wave number k = 2774+,

(¢) Caleulate the speed of propagation of the amplitude modulation i this speed is
called the group speed v, of the wave).

11.25 Hlustrate the normal modes for the case of four particles in a linear array. Find the
numerical values of the ratios of the second. third, and tourth normal frequencies to

the lowest or first normal frequency.

11.26 A light elastic cord of natural length [ and stiffness K is stretched out to a length [ +
Al and loaded with a number i of particles evenly spaced along its length. I m is the
total mass of all n particles, find the speed of transverse and of longitudinal waves in
the cord.

11.27  Work Problem 11.26 for the case in which, instead of being loaded. the cord is heavy

with linear mass densitv o

e of the linear

diagonal elenien:<

vdrogen atoms of
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C 11.1 Consider a single pulse traveling down an infinitely long string. Assume that at t = 0.

the shupe of the pulse. or the vertical displacement of the string. is
m and the -
wl Ireqiencies o 1

yuo =7 s (e

o interact directh + x*

Analogous to the discussion of Fourier series in Section 3.7. this pulse can be thought
of as a superposition of harmonic waves of differing wave numbers k. The infinite sum
of Section 3.7, however, that approximates a repetitive function needs to be replaced
here by an integral over an infinite number of harmonic waves, each one weighted by
an appropriate amplitude function. that is.

yivi = [Vuuk cosikxr dk i2)
: [

We use cosine finictions since yix: is an even function of x. The amplitude function
atk)is given by

‘ ‘ yixt costkat dx 31

1o

aikr =

{a} Caleulate aiki using Equation 3.

(b) Substitute atk: into Equation 2 and show that it vields y1x),
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