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Mechanics Spring 2003 - Test 1

)\."’ Problem 1.1 A cyclist (could be Greg LeMonde, Caleb), rides around an un-
banked (flat) circular track. The cyclist completes each lap in time Tj4,, and
thus moves at a constant angular velocity. As the race goes on, the rider is
gradually forced from an initial radius rg to a radius Ar + v, where Ar is a
constant. The radius of the cyclist’s trajectory is given by

3
’I’(t) =7y + A?(l - 677>
where 7 is constant that captures the characteristic time to change radii.

(a

) Write (¢
4 (b) Calculate ¢ (1‘)

“ . . - . ..
. (c) Calculate the kinetic energy as a function of time.

—\(d) talculate a(t).

%4(e) Calculate the angle between the acceleration and velocity as a function of
time. This may be messy.

’l Problem 1.2 A particle of mass m is shot into a region where it experiences
Vv _;
a force F = e~ where o and 3 are positive constants. Take z(0) = 0 and
v(0) = vy as the initial conditions.

7L (a) Does a potential function exist for this force? Why or why not?

X (b) Find the velocity as a function of the distance x from the point the particle
enters the force field.

4 (¢) Find the distance the particle travels before coming to a stop.

3 (d) Write the integral, with appropriate limits of integration, that you would
evaluate to find the trajectory, z(t), of the particle.

e) Write kinetic energy of the particle as a function of position.
25 1
f) How much total cnergy is dissipated by the force before the particle comes
7 ;; p y ¥
to rest?

Problem 1.3 Consider the potential function U(x) = az® — bx, where a and b
are positive constants. It may help to sketch the potential.

/B (a) Compute the location of the local minima, #,,;,, and the local maxima ., 4.

of this potential.
T& xﬂ;'\\
,5 (b) What condition must the-tetetemersy—rs, of a particle of mass m satisty
so that the particle oscillates about @, that is the particle is confined
to potential well about a,,;,7



4 (c) Write the velocity as a function of position for a particle of mass m with
initial velocity vy at x,,i, at t = 0.

/> (d) If a particle of mass m was released from = = 0 with zero initial velocity,
compute its other turning point.

$ (e) Compute the natural frequency of this particle from small amplitude oscil-
lations about &, -

; Problem 1.4 My daughter Katherine(Kat) likes to jump on a trampoline. This
@ problems asks you to analyze the Kat/trampoline system. Let the location of
the center of the trampoline when Kat stands still be @ = 0 and upward be
positive. The force of gravity simply shifts the equilibrium position and may be
ignored in the analysis of the oscillations. I asked Kat to jump once. Using a
tape measure and my wrist watch, I measure the amplitude of the first inaxima
to be 2 inches and the amplitude of the second maxima 1 inch. Kat oscillated
up and down for a while and came to a stop. The period of these oscillations is

:; seconds.

\ (a) From the available information, what color is my youngest daughter’s hair?

7 (b) Is the motion of the trampoline/Kat system overdamped, critically damped,
or underdamped? Support your choice. Tell what you would expect to
sce if the cases you did not choose were the case.

7. (c) Calculate the angular damping frequency, wq.
A (d) Caleulate the damping constant .

7 (e) Calculate the natural frequency wo.

(f) If the initial maxima happens at £ = 0. Use initial conditions xg = —2
inches and vy = 0 at # = 0. Write the trajectory of the trampoline surtace
x(t).

-2 (g) Compute the resonant frequency of the trampoline.
Kat begins jumping once per second, T° = ls, applying a sinusoidal driving
force I' = Fy coswt, where w = 27 /1" and we will assuine Iy = mg where

Kat’s mass is m = 30kg.

3 (h) Compute the amplitude of the trampoline/Kat system under this driving
force.

3 (i) Compute the phase shift of the trampoline/Kat system under this driving
force.
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