PHYS 4073 - Quantum Mechanics- Homework Set 1

Reading Assignment: Chapter 1

Due 5:45pm Monday August 30th in my box in the physics office or in office hours.

Griffiths' Problems

Additional Problems

Problem A1 - Complex Numbers A little practice with complex numbers.
(a) Write $1 /(1+i)$ in the form $a+b i$ and the form $\rho e^{i \theta}$
(b) Write $2 e^{i \pi / 6}$ in the form $a+i b$
(c) Compute $\sqrt{1+2 i}$

Problem A2 - Complex Numbers, But More Interesting Use complex numbers to compute a more expressive form of the sum of two sine waves of different frequency ω and 3ω but equal amplitude A. Show the sum of the two waves $f=A \sin \omega t+A \sin 3 \omega t$ can be written as the product of a wave with a frequency that is the average of the two frequencies multiplied by a wave whose frequency is one half the difference of the two frequencies. Start by writing f as the imaginary part of some complex exponentials.

Problem A3-Wave Functions Consider the ground state of the infinite square well, $\psi(x)=A \sin (\pi x / a)$ for $0<x<a$ and $\psi(x)=0$ otherwise.
(a) Find A.
(b) Find $\langle x\rangle$.
(c) Find σ_{x}.
(d) Find the probability the particle is found in the middle of the well from $a / 4$ to $3 a / 4$.

Problem A4 - Double Slit Monochromatic (single frequency, ω) light is incident on two slits. The slits are a distance d apart, are very narrow, and are a distance ℓ from a screen. The electric field of the wave is given by $E(x, t)=E_{0} \sin (k x-\omega t)$ where k is the wavenumber $k=2 \pi / \lambda$ and λ is the wavelength. The intensity of the light on the screen in naturally proportional to E^{2}. Work out the location of the minima of the interference pattern as measured by the distance y from the central maximum. You may assume $d \ll \ell$ and naturally $c=\omega / k$, but that's not important.

Problem A5-Baseballs The quantum (De Broglie) wavelength of anything is $\lambda=h / m v$ where m is the mass, v is the velocity, and h is Planck's constant. Compute the spacing of the central maximum and the first interference minima for a baseball thrown at 100 mph at a wall containing two windows a distance 5 ft apart. The interference pattern is observed on a wall a distance of 20 ft from the windows.

Problem A6-From the GRE Consider a stepwise wave function $\psi=0$ for $x<0, \psi=1$ for $0<x<1$, $\psi=2$ for $1<x<2, \psi=5$ for $2<x<3, \psi=1$ for $3<x<4$, and $\psi=0$ for $x>4$. Find the probability the particle is found between $x=2$ and $x=3$. Naturally, you are not going to consider working with a non-normalized wave function.

