PHYS 4073 - Quantum Mechanics- Homework Set 6

Reading Assignment: No additional material.

Due at $5: 45 \mathrm{pm}$ Monday October 25th in my box or at my office.

Griffiths' Problems

3.4
3.10
3.14
3.27
3.30

Additional Problems

All additional problems use the following two matrices where \hat{H} is the hamiltonian and \hat{A} is a second matrix associated with physical quantity a :

$$
\begin{gathered}
\hat{H}=\hbar \omega\left(\begin{array}{ccc}
1 & i & 0 \\
-i & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\hat{A}=\hbar\left(\begin{array}{ccc}
1 & 0 & i \\
0 & 1 & 0 \\
-i & 0 & 1
\end{array}\right)
\end{gathered}
$$

A1 Are either or both \hat{A} and \hat{H} Hermitian? Why? What does this imply?
A2 Calculate the uncertain relation, $\sigma_{E}^{2} \sigma_{a}^{2}>$? for a system in the energy ground state.
A3 A system is prepared in the energy ground state. What values of a could be observed with what probability?

A4 A system is prepared in a linear combination of the energy ground state and the first excited state:

$$
\left.\left|\psi>=\frac{1}{\sqrt{2}}\right| \phi_{0}>+\frac{1}{\sqrt{2}} \right\rvert\, \phi_{1}>
$$

Calculate the expectation value of $a,\langle a\rangle$, as a function of time directly by calculating $|\psi(t)\rangle$ and then calculating the expectation value.

A5 A measurement is performed that finds the system is in a state with the lowest value of a. Calculate the expectation value of the energy for this state.

