PHYS 4073 - Quantum Mechanics- Test 2 - Fall 2010

All problems are worth 25 points. Turn in solutions to four of the six problems to be graded. If you turn in more than four solutions, I will grade the first four. You are allowed to drop one-half of a test, so I will take the first two problems turned in as the first half-test and the second two problems turned in as the second half-test.

1 The Hamiltonian of a two-state system in the basis $\{|1>| 2>$,$\} is$

$$
\hat{H}=\hbar \omega\left(\begin{array}{cc}
1 & -2 i \\
2 i & 1
\end{array}\right)
$$

The system is in the state

$$
\left\lvert\, \psi>=\frac{1}{\sqrt{2}}(|1>+| 2>)\right.
$$

What energies could be measured for the system in this state with what probability? What is the expectation value of the energy?

2 A system is in a simple gravitation potential $V(x)=-m g x$. Compute the uncertainty relation for the energy of the system and the position when the system is in a general state $|\psi\rangle$. Compute the uncertainty relation for the energy of the system and the momentum when the system is in a general state $|\psi\rangle$.

3 Show that a system moving in a simple gravitation potential $V(x)=-m g x$ has the correct classical behavior, that is show the time dependance of the average position and momentum is what you would expect classically.
4 Consider two operators of a two-state system in the basis $\{|1>| 2>$,

$$
\hat{A}=a\left(\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right)
$$

and

$$
\hat{B}=b\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)
$$

Which operator or operators could represent a physical observable and why? Find the eigenvalues of both matrices. Were they what you expected? Comment. Calculate $[\hat{A}, \hat{B}]$.

5 For the space spanned by the lowest three energy states of the simple harmonic oscillator, $\{\mid \hbar \omega / 2>$ $,|3 \hbar \omega / 2>| ,5 \hbar \omega / 2>\}$ write the matrix representing the operator

$$
\hat{A}=\hat{a}_{+}^{2}+\hat{a}_{-}^{2}
$$

where \hat{a}_{+}and \hat{a}_{-}are the raising and lowering operators. Is \hat{A} Hermitian? Justify.
6 Consider the three lowest energy states, $\{|1>,|2>| 3>$,$\} of an infinite square well with V=\infty$ outside the range 0 to a. Write the Hamiltonian matrix and the matrix representing the position operator \hat{X}.

