Quantum Mechanics Fall 2003- Homework Set 2

Due Weds Sept 17, 2003 at 5:00pm

Additional Problems

Problem A1 Consider a particle of mass m moving in a one dimensional potential $V=\frac{1}{2} k x^{2}$.
(a) Write the Classical Hamiltonian of the system, then the quantum mechanical Hamiltonian.
(b) Calculate the time rate of change of the average position $<X>$ and the average momentum $\langle P\rangle$.
(c) Write the uncertainty relation for the momentum and energy.
(d) Solve the two equations in (b) for the average trajectory of the particle.

Problem A2 Consider a 3 state system spanned by the vectors $\{|1>| 2>$, $, \mid 3>\}$. The hamiltonian of the system (in this basis is),

$$
\hat{H}=\hbar \omega\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

The system is in state $\left|\psi(0)>=\frac{1}{2}\right| 1>+\frac{1}{\sqrt{2}}\left|2>+\frac{1}{2}\right| 3>$ at time $t=0$.
(a) Is the Hamiltonian Hermitian?
(b) If the energy of the system is measured what are the possible outcomes for this state vector and with probabilities?
(c) Calculate $\mid \psi(t)>$.

Now consider the observables.

$$
\begin{aligned}
& \hat{A}=a\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 3
\end{array}\right) \\
& \hat{B}=b\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

(d) Which of the following sets of operators are complete sets of commuting observables? $\{H\},\{A\},\{A, B\},\{A, H\}$, or $\{H, B\}$. Justify.
(e) Calculate the expectation value of B as a function of time.
(f) For $\mid \psi(0)>$, what outcomes of a measurement of B are possible and with what probabilities?

Problem A3 Consider the system in the previous problem.
(a) Calculate an uncertainty relation for \hat{H} and \hat{B}.
(b) Using Ehrenfest's Thm (generalized) calculate the time rate of change of $\langle\hat{B}\rangle$.

Griffith Problems

- 3.4
- 3.9
- 3.10
- 3.22
- 3.23
- 3.39
- 3.58

Cohen-Tannoudji Problems - in $H_{I I}$

Problem CT 2.3 The state space of a certain physical system is three dimensional with orthonormal basis vectors $\left|u_{1}\right\rangle,\left|u_{2}\right\rangle$, and $\left|u_{3}\right\rangle$. Let the kets $\mid \psi_{0}>$ and $\mid \psi_{1}>$ be defined as:

$$
\begin{gathered}
\left|\psi_{0}>=\frac{1}{\sqrt{2}}\right| u_{1}>+\frac{i}{2}\left|u_{2}>+\frac{1}{2}\right| u_{3}> \\
\left.\left|\psi_{1}>=\frac{1}{\sqrt{3}}\right| u_{1}>+\frac{1}{\sqrt{3}} \right\rvert\, u_{3}>
\end{gathered}
$$

(a) Are the kets normalized, if not normalize the kets.
(b) Write the operator representing the projector onto $\mid \psi_{0}>$.
(c) Project $\mid \psi_{1}>$ onto $\mid \psi_{0}>$.
(d) Calculate the matrix representing the projector onto $\mid \psi_{0}>$
(e) Use the matrix to show you get the same result as in (c).

